File size: 16,472 Bytes
38509fd c3ba182 f265473 c3ba182 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
license: unknown
---
# Description
ICVL is a hyperspectral image dataset, collected by "[Sparse Recovery of Hyperspectral Signal from Natural RGB Images](http://link.springer.com/chapter/10.1007/978-3-319-46478-7_2)"
The database images were acquired using a Specim PS Kappa DX4 hyperspectral camera and a rotary stage for spatial scanning. At this time it contains 200 images and will continue to grow progressively.
Images were collected at 1392 $\times$ 1300 spatial resolution over 519 spectral bands (400-1,000nm at roughly 1.25nm increments). The .raw files contain raw out-of-camera data in ENVI format and .hdr files contain the headers required to decode them. For your convenience, .mat files are provided, downsampled to 31 spectral channels from 400nm to 700nm at 10nm increments.
The original dataset only contains clean images. For hyperspectral image denoising benchmarks, the testing datasets come from "3D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising".
# Quick look
| | | | |
|---|---------|-----------|-------------|
|  | | | |
| 4cam_0411-1640-1 |4cam_0411-1648 |bguCAMP_0514-1659 |bguCAMP_0514-1711 |
|  | | | |
| bguCAMP_0514-1712 |bguCAMP_0514-1718 |bguCAMP_0514-1723 |bguCAMP_0514-1724 |
|  | | | |
| BGU_0403-1419-1 |bgu_0403-1439 |bgu_0403-1444 |bgu_0403-1459 |
|  | | | |
| bgu_0403-1511 |bgu_0403-1523 |bgu_0403-1525 |BGU_0522-1113-1 |
|  | | | |
| BGU_0522-1127 |BGU_0522-1136 |BGU_0522-1201 |BGU_0522-1203 |
|  | | | |
| BGU_0522-1211 |BGU_0522-1216 |BGU_0522-1217 |bulb_0822-0903 |
|  | | | |
| bulb_0822-0909 |CC_40D_2_1103-0917 |eve_0331-1549 |eve_0331-1551 |
|  | | | |
| eve_0331-1601 |eve_0331-1602 |eve_0331-1606 |eve_0331-1618 |
|  | | | |
| eve_0331-1632 |eve_0331-1633 |eve_0331-1646 |eve_0331-1647 |
|  | | | |
| eve_0331-1656 |eve_0331-1657 |eve_0331-1702 |eve_0331-1705 |
|  | | | |
| Flower_0325-1336 |gavyam_0823-0930 |gavyam_0823-0933 |gavyam_0823-0944 |
|  | | | |
| gavyam_0823-0945 |gavyam_0823-0950-1 |grf_0328-0949 |hill_0325-1219 |
|  | | | |
| hill_0325-1228 |hill_0325-1235 |hill_0325-1242 |IDS_COLORCHECK_1020-1215-1 |
|  | | | |
| IDS_COLORCHECK_1020-1223 |Labtest_0910-1502 |Labtest_0910-1504 |Labtest_0910-1506 |
|  | | | |
| Labtest_0910-1509 |Labtest_0910-1510 |Labtest_0910-1511 |Labtest_0910-1513 |
|  | | | |
| lehavim_0910-1600 |lehavim_0910-1602 |lehavim_0910-1605 |lehavim_0910-1607 |
|  | | | |
| lehavim_0910-1610 |Lehavim_0910-1622 |Lehavim_0910-1626 |Lehavim_0910-1627 |
|  | | | |
| Lehavim_0910-1629 |Lehavim_0910-1630 |Lehavim_0910-1633 |Lehavim_0910-1635 |
|  | | | |
| Lehavim_0910-1636 |Lehavim_0910-1640 |Lehavim_0910-1708 |Lehavim_0910-1716 |
|  | | | |
| Lehavim_0910-1717 |Lehavim_0910-1718 |Lehavim_0910-1725 |lst_0408-0950 |
|  | | | |
| lst_0408-1004 |lst_0408-1012 |Master20150112_f2_colorchecker |Master2900k |
|  | | | |
| Master5000K |Master5000K_2900K |Maz0326-1038 |maz_0326-1048 |
|  | | | |
| mor_0328-1209-2 |nachal_0823-1038 |nachal_0823-1040 |nachal_0823-1047 |
|  | | | |
| nachal_0823-1110 |nachal_0823-1117 |nachal_0823-1118 |nachal_0823-1121 |
|  | | | |
| nachal_0823-1127 |nachal_0823-1132 |nachal_0823-1144 |nachal_0823-1145 |
|  | | | |
| nachal_0823-1147 |nachal_0823-1149 |nachal_0823-1152 |nachal_0823-1210-4 |
|  | | | |
| nachal_0823-1213 |nachal_0823-1214 |nachal_0823-1217 |nachal_0823-1220 |
|  | | | |
| nachal_0823-1222 |nachal_0823-1223 |negev_0823-1003 |negev_0823-1005 |
|  | | | |
| objects_0924-1550 |objects_0924-1556 |objects_0924-1557 |objects_0924-1558 |
|  | | | |
| objects_0924-1600 |objects_0924-1601 |objects_0924-1602 |objects_0924-1605 |
|  | | | |
| objects_0924-1607 |objects_0924-1610 |objects_0924-1611 |objects_0924-1612 |
|  | | | |
| objects_0924-1614 |objects_0924-1617 |objects_0924-1619 |objects_0924-1620 |
|  | | | |
| objects_0924-1622 |objects_0924-1628 |objects_0924-1629 |objects_0924-1631 |
|  | | | |
| objects_0924-1632 |objects_0924-1633 |objects_0924-1634 |objects_0924-1636 |
|  | | | |
| objects_0924-1637 |objects_0924-1638 |objects_0924-1639 |objects_0924-1641 |
|  | | | |
| objects_0924-1645 |objects_0924-1648 |objects_0924-1650 |objects_0924-1652 |
|  | | | |
| omer_0331-1055 |omer_0331-1102 |omer_0331-1104 |omer_0331-1118 |
|  | | | |
| omer_0331-1119 |omer_0331-1130 |omer_0331-1131 |omer_0331-1135 |
|  | | | |
| omer_0331-1150 |omer_0331-1159 |peppers_0503-1308 |peppers_0503-1311 |
|  | | | |
| peppers_0503-1315 |peppers_0503-1330 |peppers_0503-1332 |pepper_0503-1228 |
|  | | | |
| pepper_0503-1229 |pepper_0503-1236 |plt_0411-1037 |plt_0411-1046 |
|  | | | |
| plt_0411-1116 |plt_0411-1155 |plt_0411-1200-1 |plt_0411-1207 |
|  | | | |
| plt_0411-1210 |plt_0411-1211 |plt_0411-1232-1 |prk_0328-0945 |
|  | | | |
| prk_0328-1025 |prk_0328-1031 |prk_0328-1034 |prk_0328-1037 |
|  | | | |
| prk_0328-1045 |rsh2_0406-1505 |rsh_0406-1343 |rsh_0406-1356 |
|  | | | |
| rsh_0406-1413 |rsh_0406-1427 |rsh_0406-1441-1 |rsh_0406-1443 |
|  | | | |
| sami_0331-1019 |sat_0406-1107 |sat_0406-1129 |sat_0406-1130 |
|  | | | |
| sat_0406-1157-1 |selfie_0822-0906 |strt_0331-1027 |tree_0822-0853 |
|  | | | |
| ulm_0328-1118 | | | |
# Credits
Dataset originally collected by ICVL from the webpage:
https://icvl.cs.bgu.ac.il/pages/researches/hyperspectral-imaging.html
For questions, comments and technical assistance, please contact [iCVL@cs.bgu.acil](mailto:iCVL@cs.bgu.acil)
When used, fully or partially, please cite:
```
Arad and Ben-Shahar, Sparse Recovery of Hyperspectral Signal from Natural RGB Images, in the European Conference on Computer Vision, Amsterdam, The Netherlands, October 11–14, 2016
```
Bibtex:
```
@inproceedings{arad_and_ben_shahar_2016_ECCV,
title={Sparse Recovery of Hyperspectral Signal from Natural RGB Images},
author={Arad, Boaz and Ben-Shahar, Ohad},
booktitle={European Conference on Computer Vision},
pages={19--34},
year={2016},
organization={Springer}
}
```
|