metadata
license: cc-by-4.0
RealArt-6
This is the official dataset collected for RPMArt to test the sim-to-real transfer. It contains 6 articulated object instances, each captured from 20 camera views under 5 states in scenarios with and without background, as well as presence or absence of distractors.
Dataset Structure
without_table
├── microwave
│ ├── 0_without_chaos
│ │ ├── xyzrgb_00.npz # microwave point cloud from 00 camera view under 0 state in scenario without background and without distractors
│ │ ├── xyzrgb_01.npz # microwave point cloud from 01 camera view under 0 state in scenario without background and without distractors
│ │ └── ...
│ ├── 1_without_chaos
│ ├── ...
│ ├── 0_with_chaos
│ │ ├── xyzrgb_00.npz # microwave point cloud from 00 camera view under 0 state in scenario without background and with distractors
│ │ ├── xyzrgb_01.npz # microwave point cloud from 01 camera view under 0 state in scenario without background and with distractors
│ │ └── ...
│ ├── 1_with_chaos
│ └── ...
├── refrigerator
└── ...
with_table
├── microwave
│ ├── 0_without_chaos
│ │ ├── xyzrgb_00.npz # microwave point cloud from 00 camera view under 0 state in scenario with background and without distractors
│ │ ├── xyzrgb_01.npz # microwave point cloud from 01 camera view under 0 state in scenario with background and without distractors
│ │ └── ...
│ ├── 1_without_chaos
│ ├── ...
│ ├── 0_with_chaos
│ │ ├── xyzrgb_00.npz # microwave point cloud from 00 camera view under 0 state in scenario with background and with distractors
│ │ ├── xyzrgb_01.npz # microwave point cloud from 01 camera view under 0 state in scenario with background and with distractors
│ │ └── ...
│ ├── 1_with_chaos
│ └── ...
├── refrigerator
└── ...
Dataset Creation
All data are collected by a wrist-mounted Intel RealSense L515 LiDAR camera on a 7-DOF Franka Emika robot arm. The details of collection process are presented in the paper.
Dataset Load
import numpy as np
data = np.load("./with_table/microwave/0_without_chaos/xyzrgb_00.npz")
xyz = data['point_cloud'].astype(np.float32) # (N, 3)
rgb = data['rgb'].astype(np.float32) # (N, 3)
art = data['joints'] # (J, 10)
joint_origins = art[:, 0:3].astype(np.float32) # (J, 3)
joint_directions = art[:, 3:6].astype(np.float32) # (J, 3)
affordable_points = art[:, 6:9].astype(np.float32) # (J, 3)
articulation_types = art[:, -1].astype(np.int64) # (J,)
Dataset License
This dataset is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. If you find it helpful, please consider citing our work:
@article{wang2024rpmart,
title={RPMArt: Towards Robust Perception and Manipulation for Articulated Objects},
author={Wang, Junbo and Liu, Wenhai and Yu, Qiaojun and You, Yang and Liu, Liu and Wang, Weiming and Lu, Cewu},
journal={arXiv preprint arXiv:2403.16023},
year={2024}
}