--- license: cc-by-4.0 --- # RealArt-6 This is the official dataset collected for [RPMArt](https://r-pmart.github.io/) to test the sim-to-real transfer. It contains 6 articulated object instances, each captured from 20 camera views under 5 states in scenarios with and without background, as well as presence or absence of distractors. ## Dataset Structure ``` without_table ├── microwave │ ├── 0_without_chaos │ │ ├── xyzrgb_00.npz # microwave point cloud from 00 camera view under 0 state in scenario without background and without distractors │ │ ├── xyzrgb_01.npz # microwave point cloud from 01 camera view under 0 state in scenario without background and without distractors │ │ └── ... │ ├── 1_without_chaos │ ├── ... │ ├── 0_with_chaos │ │ ├── xyzrgb_00.npz # microwave point cloud from 00 camera view under 0 state in scenario without background and with distractors │ │ ├── xyzrgb_01.npz # microwave point cloud from 01 camera view under 0 state in scenario without background and with distractors │ │ └── ... │ ├── 1_with_chaos │ └── ... ├── refrigerator └── ... with_table ├── microwave │ ├── 0_without_chaos │ │ ├── xyzrgb_00.npz # microwave point cloud from 00 camera view under 0 state in scenario with background and without distractors │ │ ├── xyzrgb_01.npz # microwave point cloud from 01 camera view under 0 state in scenario with background and without distractors │ │ └── ... │ ├── 1_without_chaos │ ├── ... │ ├── 0_with_chaos │ │ ├── xyzrgb_00.npz # microwave point cloud from 00 camera view under 0 state in scenario with background and with distractors │ │ ├── xyzrgb_01.npz # microwave point cloud from 01 camera view under 0 state in scenario with background and with distractors │ │ └── ... │ ├── 1_with_chaos │ └── ... ├── refrigerator └── ... ``` ## Dataset Creation All data are collected by a wrist-mounted Intel RealSense L515 LiDAR camera on a 7-DOF Franka Emika robot arm. The details of collection process are presented in the [paper](https://arxiv.org/abs/2403.16023). ## Dataset Load ```python import numpy as np data = np.load("./with_table/microwave/0_without_chaos/xyzrgb_00.npz") xyz = data['point_cloud'].astype(np.float32) # (N, 3) rgb = data['rgb'].astype(np.float32) # (N, 3) art = data['joints'] # (J, 10) joint_origins = art[:, 0:3].astype(np.float32) # (J, 3) joint_directions = art[:, 3:6].astype(np.float32) # (J, 3) affordable_points = art[:, 6:9].astype(np.float32) # (J, 3) articulation_types = art[:, -1].astype(np.int64) # (J,) ``` ## Dataset License This dataset is released under the [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/) license. If you find it helpful, please consider citing our work: ``` @article{wang2024rpmart, title={RPMArt: Towards Robust Perception and Manipulation for Articulated Objects}, author={Wang, Junbo and Liu, Wenhai and Yu, Qiaojun and You, Yang and Liu, Liu and Wang, Weiming and Lu, Cewu}, journal={arXiv preprint arXiv:2403.16023}, year={2024} } ```