File size: 27,899 Bytes
5738a0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import sys,os
current_dir = os.path.dirname(__file__)
sys.path.append(os.path.abspath(os.path.join(current_dir, '..')))
import argparse
import copy
import logging
import math
import os
from contextlib import contextmanager
import functools
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from packaging import version
from peft import LoraConfig
from tqdm.auto import tqdm
from transformers import CLIPTokenizer, PretrainedConfig, T5TokenizerFast
from src.hook import save_model_hook,load_model_hook
import diffusers
from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    FluxPipeline,
)
from src.SubjectGeniusTransformer2DModel import SubjectGeniusTransformer2DModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import cast_training_params, compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
from src.dataloader import get_dataset,prepare_dataset,collate_fn
if is_wandb_available():
    pass
from src.text_encoder import encode_prompt
from datetime import datetime
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")

logger = get_logger(__name__, log_level="INFO")


@contextmanager
def preserve_requires_grad(model):
    # 备份 requires_grad 状态
    requires_grad_backup = {name: param.requires_grad for name, param in model.named_parameters()}
    yield
    # 恢复 requires_grad 状态
    for name, param in model.named_parameters():
        param.requires_grad = requires_grad_backup[name]
def load_text_encoders(class_one, class_two):
    text_encoder_one = class_one.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
    )
    text_encoder_two = class_two.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
    )
    return text_encoder_one, text_encoder_two

def encode_images(pixels: torch.Tensor, vae: torch.nn.Module, weight_dtype):
    pixel_latents = vae.encode(pixels.to(vae.dtype)).latent_dist.sample()
    pixel_latents = (pixel_latents - vae.config.shift_factor) * vae.config.scaling_factor
    return pixel_latents.to(weight_dtype)


def import_model_class_from_model_name_or_path(
    pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path, subfolder=subfolder, revision=revision
    )
    model_class = text_encoder_config.architectures[0]
    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="training script.")
    parser.add_argument( "--pretrained_model_name_or_path",type=str,default="ckpt/FLUX.1-schnell")
    parser.add_argument("--transformer",type=str,default="ckpt/FLUX.1-schnell",)
    parser.add_argument("--work_dir",type=str,default="output/train_result",)
    parser.add_argument("--output_denoising_lora",type=str,default="depth_canny_union",)
    parser.add_argument("--pretrained_condition_lora_dir",type=str,default="ckpt/Condition_LoRA",)
    parser.add_argument("--training_adapter",type=str,default="ckpt/FLUX.1-schnell-training-adapter",)
    parser.add_argument("--checkpointing_steps",type=int,default=1,)
    parser.add_argument("--resume_from_checkpoint",type=str,default=None,)
    parser.add_argument("--rank",type=int,default=4,help="The dimension of the LoRA rank.")

    parser.add_argument("--dataset_name",type=str,default=[
            "dataset/split_SubjectSpatial200K/train",
            "dataset/split_SubjectSpatial200K/Collection3/train",
        ],
    )
    parser.add_argument("--image_column", type=str, default="image",)
    parser.add_argument("--bbox_column",type=str,default="bbox",)
    parser.add_argument("--canny_column",type=str,default="canny",)
    parser.add_argument("--depth_column",type=str,default="depth",)
    parser.add_argument("--condition_types",type=str,nargs='+',default=["depth","canny"],)

    parser.add_argument("--max_sequence_length",type=int,default=512,help="Maximum sequence length to use with with the T5 text encoder")
    parser.add_argument("--mixed_precision",type=str,default="bf16", choices=["no", "fp16", "bf16"],)
    parser.add_argument("--cache_dir",type=str,default="cache",)
    parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
    parser.add_argument("--resolution",type=int,default=512,)
    parser.add_argument("--train_batch_size", type=int, default=1)
    parser.add_argument("--num_train_epochs", type=int, default=None)
    parser.add_argument("--max_train_steps", type=int, default=30000,)
    parser.add_argument("--gradient_accumulation_steps",type=int,default=2)

    parser.add_argument("--learning_rate",type=float,default=1e-4)
    parser.add_argument("--scale_lr",action="store_true",default=False,)
    parser.add_argument("--lr_scheduler",type=str,default="cosine",
                        choices=["linear", "cosine", "cosine_with_restarts", "polynomial","constant", "constant_with_warmup"])
    parser.add_argument("--lr_warmup_steps", type=int, default=500,)
    parser.add_argument("--weighting_scheme",type=str,default="none",
        choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
        help=('We default to the "none" weighting scheme for uniform sampling and uniform loss'),
    )
    parser.add_argument("--dataloader_num_workers",type=int,default=0)
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--enable_xformers_memory_efficient_attention", default=True)

    args = parser.parse_args()
    args.revision = None
    args.variant = None
    args.work_dir = os.path.join(args.work_dir,f"{datetime.now().strftime("%y_%m_%d-%H:%M")}")
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank
    return args


def main(args):
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
    )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        os.makedirs(args.work_dir, exist_ok=True)

    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Load the tokenizers
    tokenizer_one = CLIPTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer",
        revision=args.revision,
    )
    tokenizer_two = T5TokenizerFast.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer_2",
        revision=args.revision,
    )

    # import correct text encoder classes
    text_encoder_cls_one = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder"
    )
    text_encoder_cls_two = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
    )

    # Load scheduler and models
    noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="scheduler"
    )
    noise_scheduler_copy = copy.deepcopy(noise_scheduler)

    text_encoder_one, text_encoder_two = load_text_encoders(text_encoder_cls_one, text_encoder_cls_two)
    text_encoder_one = text_encoder_one.to(accelerator.device, dtype=weight_dtype)
    text_encoder_two = text_encoder_two.to(accelerator.device, dtype=weight_dtype)

    vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="vae",
        revision=args.revision,
        variant=args.variant,
    ).to(accelerator.device, dtype=weight_dtype)
    vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)


    transformer = SubjectGeniusTransformer2DModel.from_pretrained(
        pretrained_model_name_or_path=args.pretrained_model_name_or_path,
        subfolder="transformer",
        revision=args.revision,
        variant=args.variant
    ).to(accelerator.device, dtype=weight_dtype)
    # load lora !!!!!
    lora_names = args.condition_types
    for condition_type in lora_names:
        transformer.load_lora_adapter(f"{args.pretrained_condition_lora_dir}/{condition_type}.safetensors", adapter_name=condition_type)

    transformer.load_lora_adapter(f"{args.training_adapter}/pytorch_lora_weights.safetensors", adapter_name="schnell_assistant")

    logger.info("All models loaded successfully")
    # freeze parameters of models to save more memory
    transformer.requires_grad_(False)
    vae.requires_grad_(False)
    text_encoder_one.requires_grad_(False)
    text_encoder_two.requires_grad_(False)

    logger.info("All models keeps requires_grad = False")

    single_transformer_blocks_lora = [
        f"single_transformer_blocks.{i}.proj_out"
        for i in range(len(transformer.single_transformer_blocks))
    ] + [
        f"single_transformer_blocks.{i}.proj_mlp"
        for i in range(len(transformer.single_transformer_blocks))
    ]

    transformer_lora_config = LoraConfig(
        r=args.rank,
        lora_alpha=args.rank,
        init_lora_weights="gaussian",
        target_modules=[
            "x_embedder",
            "norm1.linear",
            "attn.to_q",
            "attn.to_k",
            "attn.to_v",
            "attn.to_out.0",
            "ff.net.2",
            "norm.linear",
        ]+single_transformer_blocks_lora,
    )
    transformer.add_adapter(transformer_lora_config,adapter_name=args.output_denoising_lora)
    logger.info(f"Trainable lora: {args.output_denoising_lora} is loaded successfully")
    # hook
    accelerator.register_save_state_pre_hook(functools.partial(save_model_hook,wanted_model=transformer,accelerator=accelerator,adapter_names=[args.output_denoising_lora]))
    accelerator.register_load_state_pre_hook(functools.partial(load_model_hook,wanted_model=transformer,accelerator=accelerator,adapter_names=[args.output_denoising_lora]))
    logger.info("Hooks for save and load is ok.")

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warning(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            transformer.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")


    if args.scale_lr:
        args.learning_rate = args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes

    # Make sure the trainable params are in float32.
    if args.mixed_precision == "fp16":
        # only upcast trainable parameters (LoRA) into fp32
        cast_training_params(transformer, dtype=torch.float32)

    transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters()))

    # Initialize the optimizer
    optimizer_cls = torch.optim.AdamW

    optimizer = optimizer_cls(
        transformer_lora_parameters,
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
    logger.info("Optimizer initialized successfully.")

    # Preprocessing the datasets.
    train_dataset = get_dataset(args)
    train_dataset = prepare_dataset(train_dataset, vae_scale_factor, accelerator, args)

    # DataLoaders creation:
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        shuffle=True,
        collate_fn=collate_fn,
        batch_size=args.train_batch_size,
        num_workers=args.dataloader_num_workers,
    )
    logger.info("Training dataset and Dataloader initialized successfully.")

    tokenizers = [tokenizer_one, tokenizer_two]
    text_encoders = [text_encoder_one, text_encoder_two]

    def compute_text_embeddings(prompt, text_encoders, tokenizers):
        with torch.no_grad():
            prompt_embeds, pooled_prompt_embeds, text_ids = encode_prompt(
                text_encoders, tokenizers, prompt, args.max_sequence_length
            )
            prompt_embeds = prompt_embeds.to(accelerator.device)
            pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
            text_ids = text_ids.to(accelerator.device)
        return prompt_embeds, pooled_prompt_embeds, text_ids


    # Scheduler and math around the number of training steps.
    # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
    num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes
    if args.max_train_steps is None:
        len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes)
        num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps)
        num_training_steps_for_scheduler = (
            args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes
        )
    else:
        num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=num_warmup_steps_for_scheduler,
        num_training_steps=num_training_steps_for_scheduler,
    )
    logger.info(f"lr_scheduler:{args.lr_scheduler} initialized successfully.")

    with preserve_requires_grad(transformer):
        transformer.set_adapters([i for i in lora_names] + [args.output_denoising_lora] + ["schnell_assistant"])
    logger.info(f"Set Adapters:{[i for i in lora_names] + [args.output_denoising_lora] + ["schnell_assistant"]}")

    # Prepare everything with our `accelerator`.
    transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        transformer, optimizer, train_dataloader, lr_scheduler
    )

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes:
            logger.warning(
                f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match "
                f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. "
                f"This inconsistency may result in the learning rate scheduler not functioning properly."
            )
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("SubjectGenius", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.work_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.work_dir, path))
            global_step = int(path.split("-")[1])
            initial_global_step = global_step
            first_epoch = global_step // num_update_steps_per_epoch
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )

    def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
        sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
        schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
        timesteps = timesteps.to(accelerator.device)
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < n_dim:
            sigma = sigma.unsqueeze(-1)
        return sigma

    for epoch in range(first_epoch, args.num_train_epochs):
        transformer.train()
        for step, batch in enumerate(train_dataloader):
            with torch.no_grad():
                prompts = batch["descriptions"]
                prompt_embeds, pooled_prompt_embeds, text_ids = compute_text_embeddings(
                    prompts, text_encoders, tokenizers
                )
                # 1.1 Convert images to latent space.
                latent_image = encode_images(pixels=batch["pixel_values"],vae=vae,weight_dtype=weight_dtype)
                # 1.2 Get positional id.
                latent_image_ids = FluxPipeline._prepare_latent_image_ids(
                    latent_image.shape[0],
                    latent_image.shape[2] // 2,
                    latent_image.shape[3] // 2,
                    accelerator.device,
                    weight_dtype,
                )
                # 2.1 Convert Conditions to latent space list.
                # 2.2 Get Conditions positional id list.
                # 2.3 Get Conditions types string list.
                # (bs, cond_num, c, h, w) -> [cond_num, (bs, c, h ,w)]
                condition_latents = list(torch.unbind(batch["condition_latents"], dim=1))
                # [cond_num, (len ,3) ]
                condition_ids = []
                # [cond_num]
                condition_types = batch["condition_types"][0]
                for i,images_per_condition in enumerate(condition_latents):
                    # i means condition No.i.
                    # images_per_condition = (bs, c, h ,w)
                    images_per_condition = encode_images(pixels=images_per_condition,vae=vae,weight_dtype=weight_dtype)
                    cond_ids = FluxPipeline._prepare_latent_image_ids(
                        images_per_condition.shape[0],
                        images_per_condition.shape[2] // 2,
                        images_per_condition.shape[3] // 2,
                        accelerator.device,
                        weight_dtype,
                    )
                    if condition_types[i] == "subject":
                        cond_ids[:, 2] += images_per_condition.shape[2] // 2
                    condition_ids.append(cond_ids)
                    condition_latents[i] = images_per_condition

                # 3 Sample noise that we'll add to the latents
                noise = torch.randn_like(latent_image)
                bsz = latent_image.shape[0]

                # 4 Sample a random timestep for each image
                u = compute_density_for_timestep_sampling(
                    weighting_scheme=args.weighting_scheme,
                    batch_size=bsz,
                )
                indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
                timesteps = noise_scheduler_copy.timesteps[indices].to(device=accelerator.device)

                # 5 Add noise according to flow matching.
                # zt = (1 - texp) * x + texp * z1
                sigmas = get_sigmas(timesteps, n_dim=latent_image.ndim, dtype=latent_image.dtype)
                noisy_model_input = (1.0 - sigmas) * latent_image + sigmas * noise

                # 6.1 pack noisy_model_input
                packed_noisy_model_input = FluxPipeline._pack_latents(
                    noisy_model_input,
                    batch_size=latent_image.shape[0],
                    num_channels_latents=latent_image.shape[1],
                    height=latent_image.shape[2],
                    width=latent_image.shape[3],
                )
                # 6.2 pack Conditions latents
                for i, images_per_condition in enumerate(condition_latents):
                    condition_latents[i] = FluxPipeline._pack_latents(
                        images_per_condition,
                        batch_size=latent_image.shape[0],
                        num_channels_latents=latent_image.shape[1],
                        height=latent_image.shape[2],
                        width=latent_image.shape[3],
                    )

                # 7 handle guidance
                if accelerator.unwrap_model(transformer).config.guidance_embeds:
                    guidance = torch.tensor([args.guidance_scale], device=accelerator.device)
                    guidance = guidance.expand(latent_image.shape[0])
                else:
                    guidance = None
            with accelerator.accumulate(transformer):
                # 8 Predict the noise residual
                model_pred = transformer(
                    model_config={},
                    # Inputs of the condition (new feature)
                    condition_latents=condition_latents,
                    condition_ids=condition_ids,
                    condition_type_ids=None,
                    condition_types = condition_types,
                    # Inputs to the original transformer
                    hidden_states=packed_noisy_model_input,
                    timestep=timesteps / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    return_dict=False,
                )[0]
                model_pred = FluxPipeline._unpack_latents(
                    model_pred,
                    height=noisy_model_input.shape[2] * vae_scale_factor,
                    width=noisy_model_input.shape[3] * vae_scale_factor,
                    vae_scale_factor=vae_scale_factor,
                )
                # these weighting schemes use a uniform timestep sampling
                # and instead post-weight the loss
                weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas)
                # flow matching loss
                target = noise - latent_image

                loss = torch.mean(
                    (weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
                    1,
                )
                loss = loss.mean()

                accelerator.backward(loss)

                if accelerator.sync_gradients:
                    params_to_clip = transformer.parameters()
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
                        save_path = os.path.join(args.work_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

    accelerator.wait_for_everyone()
    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)