Datasets:

Languages:
English
ArXiv:
License:
File size: 4,599 Bytes
8d29e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d197bc
8d29e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Reddit TIFU dataset using tifu or tldr from subreddit tifu."""


import json

import datasets


_CITATION = """
@misc{kim2018abstractive,
    title={Abstractive Summarization of Reddit Posts with Multi-level Memory Networks},
    author={Byeongchang Kim and Hyunwoo Kim and Gunhee Kim},
    year={2018},
    eprint={1811.00783},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""

_DESCRIPTION = """
Reddit dataset, where TIFU denotes the name of subbreddit /r/tifu.
As defined in the publication, styel "short" uses title as summary and
"long" uses tldr as summary.

Features includes:
  - document: post text without tldr.
  - tldr: tldr line.
  - title: trimmed title without tldr.
  - ups: upvotes.
  - score: score.
  - num_comments: number of comments.
  - upvote_ratio: upvote ratio.
"""

_URL = "https://drive.google.com/uc?export=download&confirm=t&id=1ffWfITKFMJeqjT8loC8aiCLRNJpc_XnF"

_DOCUMENT = "documents"
_TITLE = "title"
_TLDR = "tldr"
_ADDITIONAL_FEATURES = ["ups", "num_comments", "score", "upvote_ratio"]


class RedditTifuConfig(datasets.BuilderConfig):
    """BuilderConfig for RedditTifu."""

    def __init__(self, summary_key=None, **kwargs):
        """BuilderConfig for RedditTifu.

        Args:
          summary_key: key string of summary in downloaded json file.
          **kwargs: keyword arguments forwarded to super.
        """
        # Version 1.1.0 remove empty document and summary strings.
        super(RedditTifuConfig, self).__init__(version=datasets.Version("1.1.0"), **kwargs)
        self.summary_key = summary_key


class RedditTifu(datasets.GeneratorBasedBuilder):
    """Reddit TIFU Dataset."""

    BUILDER_CONFIGS = [
        RedditTifuConfig(
            name="short",
            summary_key=_TITLE,
            description="Using title as summary.",
        ),
        RedditTifuConfig(
            name="long",
            summary_key=_TLDR,
            description="Using TLDR as summary.",
        ),
    ]

    def _info(self):
        features = {
            "ups": datasets.Value("float32"),
            "num_comments": datasets.Value("float32"),
            "upvote_ratio": datasets.Value("float32"),
            "score": datasets.Value("float32"),
        }
        features.update({k: datasets.Value("string") for k in [_DOCUMENT, _TLDR, _TITLE]})
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
            supervised_keys=(_DOCUMENT, self.config.summary_key),
            homepage="https://github.com/ctr4si/MMN",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_path = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"path": dl_path},
            )
        ]

    def _generate_examples(self, path=None):
        """Yields examples."""
        with open(path, "rb") as f:
            for i, line in enumerate(f):
                # keys are 'title_tokenized','permalink','title','url','num_comments',
                #   'tldr'(optional),'created_utc','trimmed_title_tokenized','ups',
                #   'selftext_html','score','upvote_ratio','tldr_tokenized'(optional),
                #   'selftext','trimmed_title','selftext_without_tldr_tokenized',
                #   'id','selftext_without_tldr'
                d = json.loads(line)
                r = {
                    _DOCUMENT: d["selftext_without_tldr"].strip(),
                    _TITLE: d["trimmed_title"].strip(),
                    _TLDR: (d["tldr"] or "").strip(),
                }
                r.update({k: d[k] for k in _ADDITIONAL_FEATURES})
                # skip if document or summary is empty
                if r[_DOCUMENT] and r[self.config.summary_key]:
                    yield i, r