|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Wikipedia NQ dataset.""" |
|
|
|
import json |
|
import random |
|
|
|
random.seed(42) |
|
|
|
import datasets |
|
RANGE = (0, 1000) |
|
|
|
_CITATION = """ |
|
@inproceedings{xorqa, |
|
title = {{XOR} {QA}: Cross-lingual Open-Retrieval Question Answering}, |
|
author = {Akari Asai and Jungo Kasai and Jonathan H. Clark and Kenton Lee and Eunsol Choi and Hannaneh Hajishirzi}, |
|
booktitle={NAACL-HLT}, |
|
year = {2021} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = "dataset load script for Wikipedia NQ" |
|
|
|
base = "/home/czhang/src/task-sparse/tevatron/hgf_datasets/xor-tydi" |
|
_DATASET_URLS = { |
|
'targetQ': { |
|
'train': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/train/targetL_dpr_train_data.json', |
|
'dev': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/dev/xor_dev_retrieve_eng_span_v1_1.jsonl', |
|
'test': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/test/xor_test_retrieve_eng_span_q_only_v1_1.jsonl', |
|
}, |
|
'engQ': { |
|
'train': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/train/EN_dpr_train_data.json', |
|
} |
|
} |
|
|
|
|
|
class XORTyDi(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
version=VERSION, |
|
name="targetQ", |
|
description="XOR-TyDI train/dev/test datasets of English Span Task"), |
|
datasets.BuilderConfig( |
|
version=VERSION, |
|
name="engQ", |
|
description="XOR-TyDI train/dev/test datasets of Full Task"), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
'query_id': datasets.Value('string'), |
|
'query': datasets.Value('string'), |
|
'answers': [datasets.Value('string')], |
|
'lang': datasets.Value('string'), |
|
'positive_passages': [ |
|
{'docid': datasets.Value('string'), 'text': datasets.Value('string'), |
|
'title': datasets.Value('string')} |
|
], |
|
'negative_passages': [ |
|
{'docid': datasets.Value('string'), 'text': datasets.Value('string'), |
|
'title': datasets.Value('string')} |
|
], |
|
}) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage="", |
|
|
|
license="", |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
group = self.config.name |
|
if self.config.data_files: |
|
downloaded_files = self.config.data_files |
|
else: |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[group]) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], |
|
}, |
|
) for split in downloaded_files |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, files): |
|
assert len(files) == 1 |
|
filepath = files[0] |
|
|
|
|
|
def process_doc_text(doc): |
|
if isinstance(doc["text"], list): |
|
assert len(doc["text"]) == 1 |
|
return doc['text'][0].strip() |
|
else: |
|
assert isinstance(doc["text"], str) |
|
return doc['text'].strip() |
|
|
|
|
|
|
|
def get_doc2docid(all_data): |
|
doc2docid = {} |
|
|
|
|
|
for i, data in enumerate(all_data): |
|
positive_ctxs = data["positive_ctxs"] |
|
hard_negative_ctxs = data["hard_negative_ctxs"] |
|
ctxs = positive_ctxs + hard_negative_ctxs |
|
|
|
for doc in ctxs: |
|
text = process_doc_text(doc) |
|
if text not in doc2docid: |
|
doc2docid[text] = len(doc2docid) |
|
return doc2docid |
|
|
|
def process_train_entry(data, _id, doc2docid): |
|
positive_ctxs = data["positive_ctxs"] |
|
hard_negative_ctxs = data["hard_negative_ctxs"] |
|
|
|
|
|
def process_ctx(ctxs, tag): |
|
processed = [] |
|
for i, doc in enumerate(ctxs): |
|
text = process_doc_text(doc) |
|
processed.append({ |
|
"title": doc["title"], |
|
"text": text, |
|
|
|
'docid': doc2docid[text] |
|
}) |
|
return processed |
|
|
|
return _id, { |
|
"query_id": _id, |
|
"query": data["question"], |
|
"answers": data.get("answers", []), |
|
"lang": "", |
|
"positive_passages": process_ctx(positive_ctxs, "pos"), |
|
"negative_passages": process_ctx(hard_negative_ctxs, "neg"), |
|
} |
|
|
|
def process_dev_test_entry(data): |
|
return data["id"], { |
|
"query_id": data["id"], |
|
"query": data["question"], |
|
"answers": data.get("answers", []), |
|
"lang": data["lang"], |
|
"positive_passages": [], |
|
"negative_passages": [], |
|
} |
|
|
|
|
|
try: |
|
with open(filepath, encoding="utf-8") as f: |
|
all_data = json.load(f) |
|
doc2docid = get_doc2docid(all_data) |
|
for i, data in enumerate(all_data): |
|
yield process_train_entry(data, i, doc2docid) |
|
|
|
|
|
except Exception as e: |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
data = json.loads(line) |
|
|
|
if "id" in data and "query_id" not in data: |
|
yield process_dev_test_entry(data) |
|
|
|
|