xor-tydi / xor-tydi.py
crystina-z's picture
Update xor-tydi.py
5080226 verified
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Wikipedia NQ dataset."""
import json
import random
random.seed(42)
import datasets
RANGE = (0, 1000)
_CITATION = """
@inproceedings{xorqa,
title = {{XOR} {QA}: Cross-lingual Open-Retrieval Question Answering},
author = {Akari Asai and Jungo Kasai and Jonathan H. Clark and Kenton Lee and Eunsol Choi and Hannaneh Hajishirzi},
booktitle={NAACL-HLT},
year = {2021}
}
"""
_DESCRIPTION = "dataset load script for Wikipedia NQ"
base = "/home/czhang/src/task-sparse/tevatron/hgf_datasets/xor-tydi"
_DATASET_URLS = {
'targetQ': {
'train': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/train/targetL_dpr_train_data.json',
'dev': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/dev/xor_dev_retrieve_eng_span_v1_1.jsonl',
'test': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/test/xor_test_retrieve_eng_span_q_only_v1_1.jsonl',
},
'engQ': {
'train': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/train/EN_dpr_train_data.json',
}
}
class XORTyDi(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
version=VERSION,
name="targetQ",
description="XOR-TyDI train/dev/test datasets of English Span Task"),
datasets.BuilderConfig(
version=VERSION,
name="engQ",
description="XOR-TyDI train/dev/test datasets of Full Task"),
]
def _info(self):
features = datasets.Features({
'query_id': datasets.Value('string'),
'query': datasets.Value('string'),
'answers': [datasets.Value('string')],
'lang': datasets.Value('string'),
'positive_passages': [
{'docid': datasets.Value('string'), 'text': datasets.Value('string'),
'title': datasets.Value('string')}
],
'negative_passages': [
{'docid': datasets.Value('string'), 'text': datasets.Value('string'),
'title': datasets.Value('string')}
],
})
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="",
# License for the dataset if available
license="",
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
group = self.config.name
if self.config.data_files:
downloaded_files = self.config.data_files
else:
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[group])
splits = [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split],
},
) for split in downloaded_files
]
return splits
def _generate_examples(self, files):
assert len(files) == 1
filepath = files[0]
def process_doc_text(doc):
if isinstance(doc["text"], list):
assert len(doc["text"]) == 1
return doc['text'][0].strip()
else:
assert isinstance(doc["text"], str)
return doc['text'].strip()
# prepare doc
def get_doc2docid(all_data):
doc2docid = {}
# with open(filepath, encoding="utf-8") as f:
# all_data = json.load(f)
for i, data in enumerate(all_data):
positive_ctxs = data["positive_ctxs"]
hard_negative_ctxs = data["hard_negative_ctxs"]
ctxs = positive_ctxs + hard_negative_ctxs
for doc in ctxs:
text = process_doc_text(doc)
if text not in doc2docid:
doc2docid[text] = len(doc2docid)
return doc2docid
def process_train_entry(data, _id, doc2docid):
positive_ctxs = data["positive_ctxs"]
hard_negative_ctxs = data["hard_negative_ctxs"]
# each ctx: {'title':... , 'text': ....}
def process_ctx(ctxs, tag):
processed = []
for i, doc in enumerate(ctxs):
text = process_doc_text(doc)
processed.append({
"title": doc["title"],
"text": text,
# 'docid': f'{tag}-{i}-{random.randint(*RANGE)}'
'docid': doc2docid[text]
})
return processed
return _id, {
"query_id": _id,
"query": data["question"],
"answers": data.get("answers", []),
"lang": "",
"positive_passages": process_ctx(positive_ctxs, "pos"),
"negative_passages": process_ctx(hard_negative_ctxs, "neg"),
}
def process_dev_test_entry(data):
return data["id"], {
"query_id": data["id"],
"query": data["question"],
"answers": data.get("answers", []),
"lang": data["lang"],
"positive_passages": [],
"negative_passages": [],
}
try:
with open(filepath, encoding="utf-8") as f:
all_data = json.load(f)
doc2docid = get_doc2docid(all_data)
for i, data in enumerate(all_data):
yield process_train_entry(data, i, doc2docid)
# if filepath.endswith(".jsonl"): <-- doesn't work
except Exception as e:
with open(filepath, encoding="utf-8") as f:
for line in f:
data = json.loads(line)
if "id" in data and "query_id" not in data:
yield process_dev_test_entry(data)