# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Wikipedia NQ dataset.""" import json import random random.seed(42) import datasets RANGE = (0, 1000) _CITATION = """ @inproceedings{xorqa, title = {{XOR} {QA}: Cross-lingual Open-Retrieval Question Answering}, author = {Akari Asai and Jungo Kasai and Jonathan H. Clark and Kenton Lee and Eunsol Choi and Hannaneh Hajishirzi}, booktitle={NAACL-HLT}, year = {2021} } """ _DESCRIPTION = "dataset load script for Wikipedia NQ" base = "/home/czhang/src/task-sparse/tevatron/hgf_datasets/xor-tydi" _DATASET_URLS = { 'targetQ': { 'train': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/train/targetL_dpr_train_data.json', 'dev': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/dev/xor_dev_retrieve_eng_span_v1_1.jsonl', 'test': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/test/xor_test_retrieve_eng_span_q_only_v1_1.jsonl', }, 'engQ': { 'train': f'https://huggingface.co/datasets/crystina-z/xor-tydi/resolve/main/train/EN_dpr_train_data.json', } } class XORTyDi(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig( version=VERSION, name="targetQ", description="XOR-TyDI train/dev/test datasets of English Span Task"), datasets.BuilderConfig( version=VERSION, name="engQ", description="XOR-TyDI train/dev/test datasets of Full Task"), ] def _info(self): features = datasets.Features({ 'query_id': datasets.Value('string'), 'query': datasets.Value('string'), 'answers': [datasets.Value('string')], 'lang': datasets.Value('string'), 'positive_passages': [ {'docid': datasets.Value('string'), 'text': datasets.Value('string'), 'title': datasets.Value('string')} ], 'negative_passages': [ {'docid': datasets.Value('string'), 'text': datasets.Value('string'), 'title': datasets.Value('string')} ], }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage="", # License for the dataset if available license="", # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): group = self.config.name if self.config.data_files: downloaded_files = self.config.data_files else: downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[group]) splits = [ datasets.SplitGenerator( name=split, gen_kwargs={ "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], }, ) for split in downloaded_files ] return splits def _generate_examples(self, files): assert len(files) == 1 filepath = files[0] def process_doc_text(doc): if isinstance(doc["text"], list): assert len(doc["text"]) == 1 return doc['text'][0].strip() else: assert isinstance(doc["text"], str) return doc['text'].strip() # prepare doc def get_doc2docid(all_data): doc2docid = {} # with open(filepath, encoding="utf-8") as f: # all_data = json.load(f) for i, data in enumerate(all_data): positive_ctxs = data["positive_ctxs"] hard_negative_ctxs = data["hard_negative_ctxs"] ctxs = positive_ctxs + hard_negative_ctxs for doc in ctxs: text = process_doc_text(doc) if text not in doc2docid: doc2docid[text] = len(doc2docid) return doc2docid def process_train_entry(data, _id, doc2docid): positive_ctxs = data["positive_ctxs"] hard_negative_ctxs = data["hard_negative_ctxs"] # each ctx: {'title':... , 'text': ....} def process_ctx(ctxs, tag): processed = [] for i, doc in enumerate(ctxs): text = process_doc_text(doc) processed.append({ "title": doc["title"], "text": text, # 'docid': f'{tag}-{i}-{random.randint(*RANGE)}' 'docid': doc2docid[text] }) return processed return _id, { "query_id": _id, "query": data["question"], "answers": data.get("answers", []), "lang": "", "positive_passages": process_ctx(positive_ctxs, "pos"), "negative_passages": process_ctx(hard_negative_ctxs, "neg"), } def process_dev_test_entry(data): return data["id"], { "query_id": data["id"], "query": data["question"], "answers": data.get("answers", []), "lang": data["lang"], "positive_passages": [], "negative_passages": [], } try: with open(filepath, encoding="utf-8") as f: all_data = json.load(f) doc2docid = get_doc2docid(all_data) for i, data in enumerate(all_data): yield process_train_entry(data, i, doc2docid) # if filepath.endswith(".jsonl"): <-- doesn't work except Exception as e: with open(filepath, encoding="utf-8") as f: for line in f: data = json.loads(line) if "id" in data and "query_id" not in data: yield process_dev_test_entry(data)