File size: 4,260 Bytes
72ffcc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.Wikipedia

# Lint as: python3
"""mMARCO Passage dataset."""

import json

import datasets

_CITATION = """
"""

_DESCRIPTION = "dataset load script for mMARCO bilingual-training datasets"

languages = [
    "spanish"
]
_DATASET_URLS = {
    lang: {
        'train': f"https://huggingface.co/datasets/crystina-z/mmarco-train-bi/resolve/main/{lang}.jsonl.gz",
    } for lang in languages
}


class MMarcoPassage(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [datasets.BuilderConfig(
        version=datasets.Version("0.0.1"),
        name=lang,
        description=f"mMARCO bilingual-training datasets for {lang}"
    ) for lang in languages
    ]

    def _info(self):
        features = datasets.Features({
            'query_id': datasets.Value('string'),
            'query_source': datasets.Value('string'),
            'query_target': datasets.Value('string'),
            'positive_passages_source': [
                {'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')}
            ],
            'positive_passages_target': [
                {'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')}
            ],
            'negative_passages_source': [
                {'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')}
            ],
            'negative_passages_target': [
                {'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')}
            ]
        })
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="",
            # License for the dataset if available
            license="",
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        lang = self.config.name
        downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang])
        '''
        if self.config.data_files:
            downloaded_files = self.config.data_files
        else:
            downloaded_files = dl_manager.download_and_extract(_DATASET_URLS)
        '''
        splits = [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={
                    "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else
                    downloaded_files[split],
                },
            ) for split in downloaded_files
        ]
        return splits

    def _generate_examples(self, files):
        """Yields examples."""
        for filepath in files:
            with open(filepath, encoding="utf-8") as f:
                for line in f:
                    data = json.loads(line)
                    if data.get('negative_passages_source') is None:
                        data['negative_passages_source'] = []
                        data['negative_passages_target'] = []
                    if data.get('positive_passages_source') is None:
                        data['positive_passages_source'] = []
                        data['positive_passages_target'] = []
                    yield data['query_id'], data