File size: 5,300 Bytes
f139375 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import cv2
import os
import os.path as osp
import torch
from torch.hub import download_url_to_file, get_dir
from urllib.parse import urlparse
# from basicsr.utils.download_util import download_file_from_google_drive
#import gdown
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
def download_pretrained_models(file_ids, save_path_root):
os.makedirs(save_path_root, exist_ok=True)
for file_name, file_id in file_ids.items():
file_url = 'https://drive.google.com/uc?id='+file_id
save_path = osp.abspath(osp.join(save_path_root, file_name))
if osp.exists(save_path):
user_response = input(f'{file_name} already exist. Do you want to cover it? Y/N\n')
if user_response.lower() == 'y':
print(f'Covering {file_name} to {save_path}')
print("skipping gdown in facelib/utils/misc.py "+file_url)
#gdown.download(file_url, save_path, quiet=False)
# download_file_from_google_drive(file_id, save_path)
elif user_response.lower() == 'n':
print(f'Skipping {file_name}')
else:
raise ValueError('Wrong input. Only accepts Y/N.')
else:
print(f'Downloading {file_name} to {save_path}')
print("skipping gdown in facelib/utils/misc.py "+file_url)
#gdown.download(file_url, save_path, quiet=False)
# download_file_from_google_drive(file_id, save_path)
def imwrite(img, file_path, params=None, auto_mkdir=True):
"""Write image to file.
Args:
img (ndarray): Image array to be written.
file_path (str): Image file path.
params (None or list): Same as opencv's :func:`imwrite` interface.
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
whether to create it automatically.
Returns:
bool: Successful or not.
"""
if auto_mkdir:
dir_name = os.path.abspath(os.path.dirname(file_path))
os.makedirs(dir_name, exist_ok=True)
return cv2.imwrite(file_path, img, params)
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
if img.dtype == 'float64':
img = img.astype('float32')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
else:
return _totensor(imgs, bgr2rgb, float32)
def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
"""Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
"""
if model_dir is None:
hub_dir = get_dir()
model_dir = os.path.join(hub_dir, 'checkpoints')
os.makedirs(os.path.join(ROOT_DIR, model_dir), exist_ok=True)
parts = urlparse(url)
filename = os.path.basename(parts.path)
if file_name is not None:
filename = file_name
cached_file = os.path.abspath(os.path.join(ROOT_DIR, model_dir, filename))
if not os.path.exists(cached_file):
print(f'Downloading: "{url}" to {cached_file}\n')
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
return cached_file
def scandir(dir_path, suffix=None, recursive=False, full_path=False):
"""Scan a directory to find the interested files.
Args:
dir_path (str): Path of the directory.
suffix (str | tuple(str), optional): File suffix that we are
interested in. Default: None.
recursive (bool, optional): If set to True, recursively scan the
directory. Default: False.
full_path (bool, optional): If set to True, include the dir_path.
Default: False.
Returns:
A generator for all the interested files with relative paths.
"""
if (suffix is not None) and not isinstance(suffix, (str, tuple)):
raise TypeError('"suffix" must be a string or tuple of strings')
root = dir_path
def _scandir(dir_path, suffix, recursive):
for entry in os.scandir(dir_path):
if not entry.name.startswith('.') and entry.is_file():
if full_path:
return_path = entry.path
else:
return_path = osp.relpath(entry.path, root)
if suffix is None:
yield return_path
elif return_path.endswith(suffix):
yield return_path
else:
if recursive:
yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
else:
continue
return _scandir(dir_path, suffix=suffix, recursive=recursive)
|