File size: 16,863 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import math

import torch
import sys

from PIL import Image
from torch.nn import Parameter
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection

from toolkit.basic import adain
from toolkit.paths import REPOS_ROOT
from toolkit.saving import load_ip_adapter_model
from toolkit.train_tools import get_torch_dtype

sys.path.append(REPOS_ROOT)
from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List, Optional, Dict
from collections import OrderedDict
from ipadapter.ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor, IPAttnProcessor2_0, \
    AttnProcessor2_0
from ipadapter.ip_adapter.ip_adapter import ImageProjModel
from ipadapter.ip_adapter.resampler import Resampler
from toolkit.config_modules import AdapterConfig
from toolkit.prompt_utils import PromptEmbeds
import weakref

if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import StableDiffusion

from diffusers import (
    EulerDiscreteScheduler,
    DDPMScheduler,
)

from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection
)
from toolkit.models.size_agnostic_feature_encoder import SAFEImageProcessor, SAFEVisionModel

from transformers import ViTHybridImageProcessor, ViTHybridForImageClassification

from transformers import ViTFeatureExtractor, ViTForImageClassification

import torch.nn.functional as F
import torch.nn as nn


class ReferenceAttnProcessor2_0(torch.nn.Module):
    r"""
        Attention processor for IP-Adapater for PyTorch 2.0.
        Args:
            hidden_size (`int`):
                The hidden size of the attention layer.
            cross_attention_dim (`int`):
                The number of channels in the `encoder_hidden_states`.
            scale (`float`, defaults to 1.0):
                the weight scale of image prompt.
            num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
                The context length of the image features.
        """

    def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, adapter=None):
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.scale = scale
        self.num_tokens = num_tokens

        self.ref_net = nn.Linear(hidden_size, hidden_size)
        self.blend = nn.Parameter(torch.zeros(hidden_size))
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self._memory = None

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            temb=None,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        if self.adapter_ref().is_active:
            if self.adapter_ref().reference_mode == "write":
                # write_mode
                memory_ref = self.ref_net(hidden_states)
                self._memory = memory_ref
            elif self.adapter_ref().reference_mode == "read":
                # read_mode
                if self._memory is None:
                    print("Warning: no memory to read from")
                else:

                    saved_hidden_states = self._memory
                    try:
                        new_hidden_states = saved_hidden_states
                        blend = self.blend
                        # expand the blend buyt keep dim 0 the same (batch)
                        while blend.ndim < new_hidden_states.ndim:
                            blend = blend.unsqueeze(0)
                        # expand batch
                        blend = torch.cat([blend] * new_hidden_states.shape[0], dim=0)
                        hidden_states = blend * new_hidden_states + (1 - blend) * hidden_states
                    except Exception as e:
                        raise Exception(f"Error blending: {e}")

        return hidden_states


class ReferenceAdapter(torch.nn.Module):

    def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig'):
        super().__init__()
        self.config = adapter_config
        self.sd_ref: weakref.ref = weakref.ref(sd)
        self.device = self.sd_ref().unet.device
        self.reference_mode = "read"
        self.current_scale = 1.0
        self.is_active = True
        self._reference_images = None
        self._reference_latents = None
        self.has_memory = False

        self.noise_scheduler: Union[DDPMScheduler, EulerDiscreteScheduler] = None

        # init adapter modules
        attn_procs = {}
        unet_sd = sd.unet.state_dict()
        for name in sd.unet.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else sd.unet.config['cross_attention_dim']
            if name.startswith("mid_block"):
                hidden_size = sd.unet.config['block_out_channels'][-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = sd.unet.config['block_out_channels'][block_id]
            else:
                # they didnt have this, but would lead to undefined below
                raise ValueError(f"unknown attn processor name: {name}")
            if cross_attention_dim is None:
                attn_procs[name] = AttnProcessor2_0()
            else:
                # layer_name = name.split(".processor")[0]
                # weights = {
                #     "to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
                #     "to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
                # }

                attn_procs[name] = ReferenceAttnProcessor2_0(
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    scale=1.0,
                    num_tokens=self.config.num_tokens,
                    adapter=self
                )
                # attn_procs[name].load_state_dict(weights)
        sd.unet.set_attn_processor(attn_procs)
        adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())

        sd.adapter = self
        self.unet_ref: weakref.ref = weakref.ref(sd.unet)
        self.adapter_modules = adapter_modules
        # load the weights if we have some
        if self.config.name_or_path:
            loaded_state_dict = load_ip_adapter_model(
                self.config.name_or_path,
                device='cpu',
                dtype=sd.torch_dtype
            )
            self.load_state_dict(loaded_state_dict)

        self.set_scale(1.0)
        self.attach()
        self.to(self.device, self.sd_ref().torch_dtype)

        # if self.config.train_image_encoder:
        #     self.image_encoder.train()
        #     self.image_encoder.requires_grad_(True)


    def to(self, *args, **kwargs):
        super().to(*args, **kwargs)
        # self.image_encoder.to(*args, **kwargs)
        # self.image_proj_model.to(*args, **kwargs)
        self.adapter_modules.to(*args, **kwargs)
        return self

    def load_reference_adapter(self, state_dict: Union[OrderedDict, dict]):
        reference_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
        reference_layers.load_state_dict(state_dict["reference_adapter"])

    # def load_state_dict(self, state_dict: Union[OrderedDict, dict]):
    #     self.load_ip_adapter(state_dict)

    def state_dict(self) -> OrderedDict:
        state_dict = OrderedDict()
        state_dict["reference_adapter"] = self.adapter_modules.state_dict()
        return state_dict

    def get_scale(self):
        return self.current_scale

    def set_reference_images(self, reference_images: Optional[torch.Tensor]):
        self._reference_images = reference_images.clone().detach()
        self._reference_latents = None
        self.clear_memory()

    def set_blank_reference_images(self, batch_size):
        self._reference_images = torch.zeros((batch_size, 3, 512, 512), device=self.device, dtype=self.sd_ref().torch_dtype)
        self._reference_latents = torch.zeros((batch_size, 4, 64, 64), device=self.device, dtype=self.sd_ref().torch_dtype)
        self.clear_memory()


    def set_scale(self, scale):
        self.current_scale = scale
        for attn_processor in self.sd_ref().unet.attn_processors.values():
            if isinstance(attn_processor, ReferenceAttnProcessor2_0):
                attn_processor.scale = scale


    def attach(self):
        unet = self.sd_ref().unet
        self._original_unet_forward = unet.forward
        unet.forward = lambda *args, **kwargs: self.unet_forward(*args, **kwargs)
        if self.sd_ref().network is not None:
            # set network to not merge in
            self.sd_ref().network.can_merge_in = False

    def unet_forward(self, sample, timestep, encoder_hidden_states, *args, **kwargs):
        skip = False
        if self._reference_images is None and self._reference_latents is None:
            skip = True
        if not self.is_active:
            skip = True

        if self.has_memory:
            skip = True

        if not skip:
            if self.sd_ref().network is not None:
                self.sd_ref().network.is_active = True
            if self.sd_ref().network.is_merged_in:
                raise ValueError("network is merged in, but we are not supposed to be merged in")
                # send it through our forward first
            self.forward(sample, timestep, encoder_hidden_states, *args, **kwargs)

        if self.sd_ref().network is not None:
            self.sd_ref().network.is_active = False

        # Send it through the original unet forward
        return self._original_unet_forward(sample, timestep, encoder_hidden_states, args, **kwargs)


    # use drop for prompt dropout, or negatives
    def forward(self, sample, timestep, encoder_hidden_states, *args, **kwargs):
        if not self.noise_scheduler:
            raise ValueError("noise scheduler not set")
        if not self.is_active or (self._reference_images is None and self._reference_latents is None):
            raise ValueError("reference adapter not active or no reference images set")
        # todo may need to handle cfg?
        self.reference_mode = "write"

        if self._reference_latents is None:
            self._reference_latents = self.sd_ref().encode_images(self._reference_images.to(
                self.device, self.sd_ref().torch_dtype
            )).detach()
        # create a sample from our reference images
        reference_latents = self._reference_latents.clone().detach().to(self.device, self.sd_ref().torch_dtype)
        # if our num of samples are half of incoming, we are doing cfg. Zero out the first half (unconditional)
        if reference_latents.shape[0] * 2 == sample.shape[0]:
            # we are doing cfg
            # Unconditional goes first
            reference_latents = torch.cat([torch.zeros_like(reference_latents), reference_latents], dim=0).detach()

        # resize it so reference_latents will fit inside sample in the center
        width_scale = sample.shape[2] / reference_latents.shape[2]
        height_scale = sample.shape[3] / reference_latents.shape[3]
        scale = min(width_scale, height_scale)
        # resize the reference latents

        mode = "bilinear" if scale > 1.0 else "bicubic"

        reference_latents = F.interpolate(
            reference_latents,
            size=(int(reference_latents.shape[2] * scale), int(reference_latents.shape[3] * scale)),
            mode=mode,
            align_corners=False
        )

        # add 0 padding if needed
        width_pad = (sample.shape[2] - reference_latents.shape[2]) / 2
        height_pad = (sample.shape[3] - reference_latents.shape[3]) / 2
        reference_latents = F.pad(
            reference_latents,
            (math.floor(width_pad), math.floor(width_pad), math.ceil(height_pad), math.ceil(height_pad)),
            mode="constant",
            value=0
        )

        # resize again just to make sure it is exact same size
        reference_latents = F.interpolate(
            reference_latents,
            size=(sample.shape[2], sample.shape[3]),
            mode="bicubic",
            align_corners=False
        )

        # todo maybe add same noise to the sample? For now we will send it through with no noise
        # sample_imgs = self.noise_scheduler.add_noise(sample_imgs, timestep)
        self._original_unet_forward(reference_latents, timestep, encoder_hidden_states, *args, **kwargs)
        self.reference_mode = "read"
        self.has_memory = True
        return None

    def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
        for attn_processor in self.adapter_modules:
            yield from attn_processor.parameters(recurse)
        # yield from self.image_proj_model.parameters(recurse)
        # if self.config.train_image_encoder:
        #     yield from self.image_encoder.parameters(recurse)
        # if self.config.train_image_encoder:
        #     yield from self.image_encoder.parameters(recurse)
        #     self.image_encoder.train()
        # else:
        #     for attn_processor in self.adapter_modules:
        #         yield from attn_processor.parameters(recurse)
        #     yield from self.image_proj_model.parameters(recurse)

    def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
        strict = False
        # self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=strict)
        self.adapter_modules.load_state_dict(state_dict["reference_adapter"], strict=strict)

    def enable_gradient_checkpointing(self):
        self.image_encoder.gradient_checkpointing = True

    def clear_memory(self):
        for attn_processor in self.adapter_modules:
            if isinstance(attn_processor, ReferenceAttnProcessor2_0):
                attn_processor._memory = None
        self.has_memory = False