File size: 43,427 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import functools
import math
import re
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F

from . import block as B

esrgan_safetensors_keys = ['model.0.weight', 'model.0.bias', 'model.1.sub.0.RDB1.conv1.0.weight',
                     'model.1.sub.0.RDB1.conv1.0.bias', 'model.1.sub.0.RDB1.conv2.0.weight',
                     'model.1.sub.0.RDB1.conv2.0.bias', 'model.1.sub.0.RDB1.conv3.0.weight',
                     'model.1.sub.0.RDB1.conv3.0.bias', 'model.1.sub.0.RDB1.conv4.0.weight',
                     'model.1.sub.0.RDB1.conv4.0.bias', 'model.1.sub.0.RDB1.conv5.0.weight',
                     'model.1.sub.0.RDB1.conv5.0.bias', 'model.1.sub.0.RDB2.conv1.0.weight',
                     'model.1.sub.0.RDB2.conv1.0.bias', 'model.1.sub.0.RDB2.conv2.0.weight',
                     'model.1.sub.0.RDB2.conv2.0.bias', 'model.1.sub.0.RDB2.conv3.0.weight',
                     'model.1.sub.0.RDB2.conv3.0.bias', 'model.1.sub.0.RDB2.conv4.0.weight',
                     'model.1.sub.0.RDB2.conv4.0.bias', 'model.1.sub.0.RDB2.conv5.0.weight',
                     'model.1.sub.0.RDB2.conv5.0.bias', 'model.1.sub.0.RDB3.conv1.0.weight',
                     'model.1.sub.0.RDB3.conv1.0.bias', 'model.1.sub.0.RDB3.conv2.0.weight',
                     'model.1.sub.0.RDB3.conv2.0.bias', 'model.1.sub.0.RDB3.conv3.0.weight',
                     'model.1.sub.0.RDB3.conv3.0.bias', 'model.1.sub.0.RDB3.conv4.0.weight',
                     'model.1.sub.0.RDB3.conv4.0.bias', 'model.1.sub.0.RDB3.conv5.0.weight',
                     'model.1.sub.0.RDB3.conv5.0.bias', 'model.1.sub.1.RDB1.conv1.0.weight',
                     'model.1.sub.1.RDB1.conv1.0.bias', 'model.1.sub.1.RDB1.conv2.0.weight',
                     'model.1.sub.1.RDB1.conv2.0.bias', 'model.1.sub.1.RDB1.conv3.0.weight',
                     'model.1.sub.1.RDB1.conv3.0.bias', 'model.1.sub.1.RDB1.conv4.0.weight',
                     'model.1.sub.1.RDB1.conv4.0.bias', 'model.1.sub.1.RDB1.conv5.0.weight',
                     'model.1.sub.1.RDB1.conv5.0.bias', 'model.1.sub.1.RDB2.conv1.0.weight',
                     'model.1.sub.1.RDB2.conv1.0.bias', 'model.1.sub.1.RDB2.conv2.0.weight',
                     'model.1.sub.1.RDB2.conv2.0.bias', 'model.1.sub.1.RDB2.conv3.0.weight',
                     'model.1.sub.1.RDB2.conv3.0.bias', 'model.1.sub.1.RDB2.conv4.0.weight',
                     'model.1.sub.1.RDB2.conv4.0.bias', 'model.1.sub.1.RDB2.conv5.0.weight',
                     'model.1.sub.1.RDB2.conv5.0.bias', 'model.1.sub.1.RDB3.conv1.0.weight',
                     'model.1.sub.1.RDB3.conv1.0.bias', 'model.1.sub.1.RDB3.conv2.0.weight',
                     'model.1.sub.1.RDB3.conv2.0.bias', 'model.1.sub.1.RDB3.conv3.0.weight',
                     'model.1.sub.1.RDB3.conv3.0.bias', 'model.1.sub.1.RDB3.conv4.0.weight',
                     'model.1.sub.1.RDB3.conv4.0.bias', 'model.1.sub.1.RDB3.conv5.0.weight',
                     'model.1.sub.1.RDB3.conv5.0.bias', 'model.1.sub.2.RDB1.conv1.0.weight',
                     'model.1.sub.2.RDB1.conv1.0.bias', 'model.1.sub.2.RDB1.conv2.0.weight',
                     'model.1.sub.2.RDB1.conv2.0.bias', 'model.1.sub.2.RDB1.conv3.0.weight',
                     'model.1.sub.2.RDB1.conv3.0.bias', 'model.1.sub.2.RDB1.conv4.0.weight',
                     'model.1.sub.2.RDB1.conv4.0.bias', 'model.1.sub.2.RDB1.conv5.0.weight',
                     'model.1.sub.2.RDB1.conv5.0.bias', 'model.1.sub.2.RDB2.conv1.0.weight',
                     'model.1.sub.2.RDB2.conv1.0.bias', 'model.1.sub.2.RDB2.conv2.0.weight',
                     'model.1.sub.2.RDB2.conv2.0.bias', 'model.1.sub.2.RDB2.conv3.0.weight',
                     'model.1.sub.2.RDB2.conv3.0.bias', 'model.1.sub.2.RDB2.conv4.0.weight',
                     'model.1.sub.2.RDB2.conv4.0.bias', 'model.1.sub.2.RDB2.conv5.0.weight',
                     'model.1.sub.2.RDB2.conv5.0.bias', 'model.1.sub.2.RDB3.conv1.0.weight',
                     'model.1.sub.2.RDB3.conv1.0.bias', 'model.1.sub.2.RDB3.conv2.0.weight',
                     'model.1.sub.2.RDB3.conv2.0.bias', 'model.1.sub.2.RDB3.conv3.0.weight',
                     'model.1.sub.2.RDB3.conv3.0.bias', 'model.1.sub.2.RDB3.conv4.0.weight',
                     'model.1.sub.2.RDB3.conv4.0.bias', 'model.1.sub.2.RDB3.conv5.0.weight',
                     'model.1.sub.2.RDB3.conv5.0.bias', 'model.1.sub.3.RDB1.conv1.0.weight',
                     'model.1.sub.3.RDB1.conv1.0.bias', 'model.1.sub.3.RDB1.conv2.0.weight',
                     'model.1.sub.3.RDB1.conv2.0.bias', 'model.1.sub.3.RDB1.conv3.0.weight',
                     'model.1.sub.3.RDB1.conv3.0.bias', 'model.1.sub.3.RDB1.conv4.0.weight',
                     'model.1.sub.3.RDB1.conv4.0.bias', 'model.1.sub.3.RDB1.conv5.0.weight',
                     'model.1.sub.3.RDB1.conv5.0.bias', 'model.1.sub.3.RDB2.conv1.0.weight',
                     'model.1.sub.3.RDB2.conv1.0.bias', 'model.1.sub.3.RDB2.conv2.0.weight',
                     'model.1.sub.3.RDB2.conv2.0.bias', 'model.1.sub.3.RDB2.conv3.0.weight',
                     'model.1.sub.3.RDB2.conv3.0.bias', 'model.1.sub.3.RDB2.conv4.0.weight',
                     'model.1.sub.3.RDB2.conv4.0.bias', 'model.1.sub.3.RDB2.conv5.0.weight',
                     'model.1.sub.3.RDB2.conv5.0.bias', 'model.1.sub.3.RDB3.conv1.0.weight',
                     'model.1.sub.3.RDB3.conv1.0.bias', 'model.1.sub.3.RDB3.conv2.0.weight',
                     'model.1.sub.3.RDB3.conv2.0.bias', 'model.1.sub.3.RDB3.conv3.0.weight',
                     'model.1.sub.3.RDB3.conv3.0.bias', 'model.1.sub.3.RDB3.conv4.0.weight',
                     'model.1.sub.3.RDB3.conv4.0.bias', 'model.1.sub.3.RDB3.conv5.0.weight',
                     'model.1.sub.3.RDB3.conv5.0.bias', 'model.1.sub.4.RDB1.conv1.0.weight',
                     'model.1.sub.4.RDB1.conv1.0.bias', 'model.1.sub.4.RDB1.conv2.0.weight',
                     'model.1.sub.4.RDB1.conv2.0.bias', 'model.1.sub.4.RDB1.conv3.0.weight',
                     'model.1.sub.4.RDB1.conv3.0.bias', 'model.1.sub.4.RDB1.conv4.0.weight',
                     'model.1.sub.4.RDB1.conv4.0.bias', 'model.1.sub.4.RDB1.conv5.0.weight',
                     'model.1.sub.4.RDB1.conv5.0.bias', 'model.1.sub.4.RDB2.conv1.0.weight',
                     'model.1.sub.4.RDB2.conv1.0.bias', 'model.1.sub.4.RDB2.conv2.0.weight',
                     'model.1.sub.4.RDB2.conv2.0.bias', 'model.1.sub.4.RDB2.conv3.0.weight',
                     'model.1.sub.4.RDB2.conv3.0.bias', 'model.1.sub.4.RDB2.conv4.0.weight',
                     'model.1.sub.4.RDB2.conv4.0.bias', 'model.1.sub.4.RDB2.conv5.0.weight',
                     'model.1.sub.4.RDB2.conv5.0.bias', 'model.1.sub.4.RDB3.conv1.0.weight',
                     'model.1.sub.4.RDB3.conv1.0.bias', 'model.1.sub.4.RDB3.conv2.0.weight',
                     'model.1.sub.4.RDB3.conv2.0.bias', 'model.1.sub.4.RDB3.conv3.0.weight',
                     'model.1.sub.4.RDB3.conv3.0.bias', 'model.1.sub.4.RDB3.conv4.0.weight',
                     'model.1.sub.4.RDB3.conv4.0.bias', 'model.1.sub.4.RDB3.conv5.0.weight',
                     'model.1.sub.4.RDB3.conv5.0.bias', 'model.1.sub.5.RDB1.conv1.0.weight',
                     'model.1.sub.5.RDB1.conv1.0.bias', 'model.1.sub.5.RDB1.conv2.0.weight',
                     'model.1.sub.5.RDB1.conv2.0.bias', 'model.1.sub.5.RDB1.conv3.0.weight',
                     'model.1.sub.5.RDB1.conv3.0.bias', 'model.1.sub.5.RDB1.conv4.0.weight',
                     'model.1.sub.5.RDB1.conv4.0.bias', 'model.1.sub.5.RDB1.conv5.0.weight',
                     'model.1.sub.5.RDB1.conv5.0.bias', 'model.1.sub.5.RDB2.conv1.0.weight',
                     'model.1.sub.5.RDB2.conv1.0.bias', 'model.1.sub.5.RDB2.conv2.0.weight',
                     'model.1.sub.5.RDB2.conv2.0.bias', 'model.1.sub.5.RDB2.conv3.0.weight',
                     'model.1.sub.5.RDB2.conv3.0.bias', 'model.1.sub.5.RDB2.conv4.0.weight',
                     'model.1.sub.5.RDB2.conv4.0.bias', 'model.1.sub.5.RDB2.conv5.0.weight',
                     'model.1.sub.5.RDB2.conv5.0.bias', 'model.1.sub.5.RDB3.conv1.0.weight',
                     'model.1.sub.5.RDB3.conv1.0.bias', 'model.1.sub.5.RDB3.conv2.0.weight',
                     'model.1.sub.5.RDB3.conv2.0.bias', 'model.1.sub.5.RDB3.conv3.0.weight',
                     'model.1.sub.5.RDB3.conv3.0.bias', 'model.1.sub.5.RDB3.conv4.0.weight',
                     'model.1.sub.5.RDB3.conv4.0.bias', 'model.1.sub.5.RDB3.conv5.0.weight',
                     'model.1.sub.5.RDB3.conv5.0.bias', 'model.1.sub.6.RDB1.conv1.0.weight',
                     'model.1.sub.6.RDB1.conv1.0.bias', 'model.1.sub.6.RDB1.conv2.0.weight',
                     'model.1.sub.6.RDB1.conv2.0.bias', 'model.1.sub.6.RDB1.conv3.0.weight',
                     'model.1.sub.6.RDB1.conv3.0.bias', 'model.1.sub.6.RDB1.conv4.0.weight',
                     'model.1.sub.6.RDB1.conv4.0.bias', 'model.1.sub.6.RDB1.conv5.0.weight',
                     'model.1.sub.6.RDB1.conv5.0.bias', 'model.1.sub.6.RDB2.conv1.0.weight',
                     'model.1.sub.6.RDB2.conv1.0.bias', 'model.1.sub.6.RDB2.conv2.0.weight',
                     'model.1.sub.6.RDB2.conv2.0.bias', 'model.1.sub.6.RDB2.conv3.0.weight',
                     'model.1.sub.6.RDB2.conv3.0.bias', 'model.1.sub.6.RDB2.conv4.0.weight',
                     'model.1.sub.6.RDB2.conv4.0.bias', 'model.1.sub.6.RDB2.conv5.0.weight',
                     'model.1.sub.6.RDB2.conv5.0.bias', 'model.1.sub.6.RDB3.conv1.0.weight',
                     'model.1.sub.6.RDB3.conv1.0.bias', 'model.1.sub.6.RDB3.conv2.0.weight',
                     'model.1.sub.6.RDB3.conv2.0.bias', 'model.1.sub.6.RDB3.conv3.0.weight',
                     'model.1.sub.6.RDB3.conv3.0.bias', 'model.1.sub.6.RDB3.conv4.0.weight',
                     'model.1.sub.6.RDB3.conv4.0.bias', 'model.1.sub.6.RDB3.conv5.0.weight',
                     'model.1.sub.6.RDB3.conv5.0.bias', 'model.1.sub.7.RDB1.conv1.0.weight',
                     'model.1.sub.7.RDB1.conv1.0.bias', 'model.1.sub.7.RDB1.conv2.0.weight',
                     'model.1.sub.7.RDB1.conv2.0.bias', 'model.1.sub.7.RDB1.conv3.0.weight',
                     'model.1.sub.7.RDB1.conv3.0.bias', 'model.1.sub.7.RDB1.conv4.0.weight',
                     'model.1.sub.7.RDB1.conv4.0.bias', 'model.1.sub.7.RDB1.conv5.0.weight',
                     'model.1.sub.7.RDB1.conv5.0.bias', 'model.1.sub.7.RDB2.conv1.0.weight',
                     'model.1.sub.7.RDB2.conv1.0.bias', 'model.1.sub.7.RDB2.conv2.0.weight',
                     'model.1.sub.7.RDB2.conv2.0.bias', 'model.1.sub.7.RDB2.conv3.0.weight',
                     'model.1.sub.7.RDB2.conv3.0.bias', 'model.1.sub.7.RDB2.conv4.0.weight',
                     'model.1.sub.7.RDB2.conv4.0.bias', 'model.1.sub.7.RDB2.conv5.0.weight',
                     'model.1.sub.7.RDB2.conv5.0.bias', 'model.1.sub.7.RDB3.conv1.0.weight',
                     'model.1.sub.7.RDB3.conv1.0.bias', 'model.1.sub.7.RDB3.conv2.0.weight',
                     'model.1.sub.7.RDB3.conv2.0.bias', 'model.1.sub.7.RDB3.conv3.0.weight',
                     'model.1.sub.7.RDB3.conv3.0.bias', 'model.1.sub.7.RDB3.conv4.0.weight',
                     'model.1.sub.7.RDB3.conv4.0.bias', 'model.1.sub.7.RDB3.conv5.0.weight',
                     'model.1.sub.7.RDB3.conv5.0.bias', 'model.1.sub.8.RDB1.conv1.0.weight',
                     'model.1.sub.8.RDB1.conv1.0.bias', 'model.1.sub.8.RDB1.conv2.0.weight',
                     'model.1.sub.8.RDB1.conv2.0.bias', 'model.1.sub.8.RDB1.conv3.0.weight',
                     'model.1.sub.8.RDB1.conv3.0.bias', 'model.1.sub.8.RDB1.conv4.0.weight',
                     'model.1.sub.8.RDB1.conv4.0.bias', 'model.1.sub.8.RDB1.conv5.0.weight',
                     'model.1.sub.8.RDB1.conv5.0.bias', 'model.1.sub.8.RDB2.conv1.0.weight',
                     'model.1.sub.8.RDB2.conv1.0.bias', 'model.1.sub.8.RDB2.conv2.0.weight',
                     'model.1.sub.8.RDB2.conv2.0.bias', 'model.1.sub.8.RDB2.conv3.0.weight',
                     'model.1.sub.8.RDB2.conv3.0.bias', 'model.1.sub.8.RDB2.conv4.0.weight',
                     'model.1.sub.8.RDB2.conv4.0.bias', 'model.1.sub.8.RDB2.conv5.0.weight',
                     'model.1.sub.8.RDB2.conv5.0.bias', 'model.1.sub.8.RDB3.conv1.0.weight',
                     'model.1.sub.8.RDB3.conv1.0.bias', 'model.1.sub.8.RDB3.conv2.0.weight',
                     'model.1.sub.8.RDB3.conv2.0.bias', 'model.1.sub.8.RDB3.conv3.0.weight',
                     'model.1.sub.8.RDB3.conv3.0.bias', 'model.1.sub.8.RDB3.conv4.0.weight',
                     'model.1.sub.8.RDB3.conv4.0.bias', 'model.1.sub.8.RDB3.conv5.0.weight',
                     'model.1.sub.8.RDB3.conv5.0.bias', 'model.1.sub.9.RDB1.conv1.0.weight',
                     'model.1.sub.9.RDB1.conv1.0.bias', 'model.1.sub.9.RDB1.conv2.0.weight',
                     'model.1.sub.9.RDB1.conv2.0.bias', 'model.1.sub.9.RDB1.conv3.0.weight',
                     'model.1.sub.9.RDB1.conv3.0.bias', 'model.1.sub.9.RDB1.conv4.0.weight',
                     'model.1.sub.9.RDB1.conv4.0.bias', 'model.1.sub.9.RDB1.conv5.0.weight',
                     'model.1.sub.9.RDB1.conv5.0.bias', 'model.1.sub.9.RDB2.conv1.0.weight',
                     'model.1.sub.9.RDB2.conv1.0.bias', 'model.1.sub.9.RDB2.conv2.0.weight',
                     'model.1.sub.9.RDB2.conv2.0.bias', 'model.1.sub.9.RDB2.conv3.0.weight',
                     'model.1.sub.9.RDB2.conv3.0.bias', 'model.1.sub.9.RDB2.conv4.0.weight',
                     'model.1.sub.9.RDB2.conv4.0.bias', 'model.1.sub.9.RDB2.conv5.0.weight',
                     'model.1.sub.9.RDB2.conv5.0.bias', 'model.1.sub.9.RDB3.conv1.0.weight',
                     'model.1.sub.9.RDB3.conv1.0.bias', 'model.1.sub.9.RDB3.conv2.0.weight',
                     'model.1.sub.9.RDB3.conv2.0.bias', 'model.1.sub.9.RDB3.conv3.0.weight',
                     'model.1.sub.9.RDB3.conv3.0.bias', 'model.1.sub.9.RDB3.conv4.0.weight',
                     'model.1.sub.9.RDB3.conv4.0.bias', 'model.1.sub.9.RDB3.conv5.0.weight',
                     'model.1.sub.9.RDB3.conv5.0.bias', 'model.1.sub.10.RDB1.conv1.0.weight',
                     'model.1.sub.10.RDB1.conv1.0.bias', 'model.1.sub.10.RDB1.conv2.0.weight',
                     'model.1.sub.10.RDB1.conv2.0.bias', 'model.1.sub.10.RDB1.conv3.0.weight',
                     'model.1.sub.10.RDB1.conv3.0.bias', 'model.1.sub.10.RDB1.conv4.0.weight',
                     'model.1.sub.10.RDB1.conv4.0.bias', 'model.1.sub.10.RDB1.conv5.0.weight',
                     'model.1.sub.10.RDB1.conv5.0.bias', 'model.1.sub.10.RDB2.conv1.0.weight',
                     'model.1.sub.10.RDB2.conv1.0.bias', 'model.1.sub.10.RDB2.conv2.0.weight',
                     'model.1.sub.10.RDB2.conv2.0.bias', 'model.1.sub.10.RDB2.conv3.0.weight',
                     'model.1.sub.10.RDB2.conv3.0.bias', 'model.1.sub.10.RDB2.conv4.0.weight',
                     'model.1.sub.10.RDB2.conv4.0.bias', 'model.1.sub.10.RDB2.conv5.0.weight',
                     'model.1.sub.10.RDB2.conv5.0.bias', 'model.1.sub.10.RDB3.conv1.0.weight',
                     'model.1.sub.10.RDB3.conv1.0.bias', 'model.1.sub.10.RDB3.conv2.0.weight',
                     'model.1.sub.10.RDB3.conv2.0.bias', 'model.1.sub.10.RDB3.conv3.0.weight',
                     'model.1.sub.10.RDB3.conv3.0.bias', 'model.1.sub.10.RDB3.conv4.0.weight',
                     'model.1.sub.10.RDB3.conv4.0.bias', 'model.1.sub.10.RDB3.conv5.0.weight',
                     'model.1.sub.10.RDB3.conv5.0.bias', 'model.1.sub.11.RDB1.conv1.0.weight',
                     'model.1.sub.11.RDB1.conv1.0.bias', 'model.1.sub.11.RDB1.conv2.0.weight',
                     'model.1.sub.11.RDB1.conv2.0.bias', 'model.1.sub.11.RDB1.conv3.0.weight',
                     'model.1.sub.11.RDB1.conv3.0.bias', 'model.1.sub.11.RDB1.conv4.0.weight',
                     'model.1.sub.11.RDB1.conv4.0.bias', 'model.1.sub.11.RDB1.conv5.0.weight',
                     'model.1.sub.11.RDB1.conv5.0.bias', 'model.1.sub.11.RDB2.conv1.0.weight',
                     'model.1.sub.11.RDB2.conv1.0.bias', 'model.1.sub.11.RDB2.conv2.0.weight',
                     'model.1.sub.11.RDB2.conv2.0.bias', 'model.1.sub.11.RDB2.conv3.0.weight',
                     'model.1.sub.11.RDB2.conv3.0.bias', 'model.1.sub.11.RDB2.conv4.0.weight',
                     'model.1.sub.11.RDB2.conv4.0.bias', 'model.1.sub.11.RDB2.conv5.0.weight',
                     'model.1.sub.11.RDB2.conv5.0.bias', 'model.1.sub.11.RDB3.conv1.0.weight',
                     'model.1.sub.11.RDB3.conv1.0.bias', 'model.1.sub.11.RDB3.conv2.0.weight',
                     'model.1.sub.11.RDB3.conv2.0.bias', 'model.1.sub.11.RDB3.conv3.0.weight',
                     'model.1.sub.11.RDB3.conv3.0.bias', 'model.1.sub.11.RDB3.conv4.0.weight',
                     'model.1.sub.11.RDB3.conv4.0.bias', 'model.1.sub.11.RDB3.conv5.0.weight',
                     'model.1.sub.11.RDB3.conv5.0.bias', 'model.1.sub.12.RDB1.conv1.0.weight',
                     'model.1.sub.12.RDB1.conv1.0.bias', 'model.1.sub.12.RDB1.conv2.0.weight',
                     'model.1.sub.12.RDB1.conv2.0.bias', 'model.1.sub.12.RDB1.conv3.0.weight',
                     'model.1.sub.12.RDB1.conv3.0.bias', 'model.1.sub.12.RDB1.conv4.0.weight',
                     'model.1.sub.12.RDB1.conv4.0.bias', 'model.1.sub.12.RDB1.conv5.0.weight',
                     'model.1.sub.12.RDB1.conv5.0.bias', 'model.1.sub.12.RDB2.conv1.0.weight',
                     'model.1.sub.12.RDB2.conv1.0.bias', 'model.1.sub.12.RDB2.conv2.0.weight',
                     'model.1.sub.12.RDB2.conv2.0.bias', 'model.1.sub.12.RDB2.conv3.0.weight',
                     'model.1.sub.12.RDB2.conv3.0.bias', 'model.1.sub.12.RDB2.conv4.0.weight',
                     'model.1.sub.12.RDB2.conv4.0.bias', 'model.1.sub.12.RDB2.conv5.0.weight',
                     'model.1.sub.12.RDB2.conv5.0.bias', 'model.1.sub.12.RDB3.conv1.0.weight',
                     'model.1.sub.12.RDB3.conv1.0.bias', 'model.1.sub.12.RDB3.conv2.0.weight',
                     'model.1.sub.12.RDB3.conv2.0.bias', 'model.1.sub.12.RDB3.conv3.0.weight',
                     'model.1.sub.12.RDB3.conv3.0.bias', 'model.1.sub.12.RDB3.conv4.0.weight',
                     'model.1.sub.12.RDB3.conv4.0.bias', 'model.1.sub.12.RDB3.conv5.0.weight',
                     'model.1.sub.12.RDB3.conv5.0.bias', 'model.1.sub.13.RDB1.conv1.0.weight',
                     'model.1.sub.13.RDB1.conv1.0.bias', 'model.1.sub.13.RDB1.conv2.0.weight',
                     'model.1.sub.13.RDB1.conv2.0.bias', 'model.1.sub.13.RDB1.conv3.0.weight',
                     'model.1.sub.13.RDB1.conv3.0.bias', 'model.1.sub.13.RDB1.conv4.0.weight',
                     'model.1.sub.13.RDB1.conv4.0.bias', 'model.1.sub.13.RDB1.conv5.0.weight',
                     'model.1.sub.13.RDB1.conv5.0.bias', 'model.1.sub.13.RDB2.conv1.0.weight',
                     'model.1.sub.13.RDB2.conv1.0.bias', 'model.1.sub.13.RDB2.conv2.0.weight',
                     'model.1.sub.13.RDB2.conv2.0.bias', 'model.1.sub.13.RDB2.conv3.0.weight',
                     'model.1.sub.13.RDB2.conv3.0.bias', 'model.1.sub.13.RDB2.conv4.0.weight',
                     'model.1.sub.13.RDB2.conv4.0.bias', 'model.1.sub.13.RDB2.conv5.0.weight',
                     'model.1.sub.13.RDB2.conv5.0.bias', 'model.1.sub.13.RDB3.conv1.0.weight',
                     'model.1.sub.13.RDB3.conv1.0.bias', 'model.1.sub.13.RDB3.conv2.0.weight',
                     'model.1.sub.13.RDB3.conv2.0.bias', 'model.1.sub.13.RDB3.conv3.0.weight',
                     'model.1.sub.13.RDB3.conv3.0.bias', 'model.1.sub.13.RDB3.conv4.0.weight',
                     'model.1.sub.13.RDB3.conv4.0.bias', 'model.1.sub.13.RDB3.conv5.0.weight',
                     'model.1.sub.13.RDB3.conv5.0.bias', 'model.1.sub.14.RDB1.conv1.0.weight',
                     'model.1.sub.14.RDB1.conv1.0.bias', 'model.1.sub.14.RDB1.conv2.0.weight',
                     'model.1.sub.14.RDB1.conv2.0.bias', 'model.1.sub.14.RDB1.conv3.0.weight',
                     'model.1.sub.14.RDB1.conv3.0.bias', 'model.1.sub.14.RDB1.conv4.0.weight',
                     'model.1.sub.14.RDB1.conv4.0.bias', 'model.1.sub.14.RDB1.conv5.0.weight',
                     'model.1.sub.14.RDB1.conv5.0.bias', 'model.1.sub.14.RDB2.conv1.0.weight',
                     'model.1.sub.14.RDB2.conv1.0.bias', 'model.1.sub.14.RDB2.conv2.0.weight',
                     'model.1.sub.14.RDB2.conv2.0.bias', 'model.1.sub.14.RDB2.conv3.0.weight',
                     'model.1.sub.14.RDB2.conv3.0.bias', 'model.1.sub.14.RDB2.conv4.0.weight',
                     'model.1.sub.14.RDB2.conv4.0.bias', 'model.1.sub.14.RDB2.conv5.0.weight',
                     'model.1.sub.14.RDB2.conv5.0.bias', 'model.1.sub.14.RDB3.conv1.0.weight',
                     'model.1.sub.14.RDB3.conv1.0.bias', 'model.1.sub.14.RDB3.conv2.0.weight',
                     'model.1.sub.14.RDB3.conv2.0.bias', 'model.1.sub.14.RDB3.conv3.0.weight',
                     'model.1.sub.14.RDB3.conv3.0.bias', 'model.1.sub.14.RDB3.conv4.0.weight',
                     'model.1.sub.14.RDB3.conv4.0.bias', 'model.1.sub.14.RDB3.conv5.0.weight',
                     'model.1.sub.14.RDB3.conv5.0.bias', 'model.1.sub.15.RDB1.conv1.0.weight',
                     'model.1.sub.15.RDB1.conv1.0.bias', 'model.1.sub.15.RDB1.conv2.0.weight',
                     'model.1.sub.15.RDB1.conv2.0.bias', 'model.1.sub.15.RDB1.conv3.0.weight',
                     'model.1.sub.15.RDB1.conv3.0.bias', 'model.1.sub.15.RDB1.conv4.0.weight',
                     'model.1.sub.15.RDB1.conv4.0.bias', 'model.1.sub.15.RDB1.conv5.0.weight',
                     'model.1.sub.15.RDB1.conv5.0.bias', 'model.1.sub.15.RDB2.conv1.0.weight',
                     'model.1.sub.15.RDB2.conv1.0.bias', 'model.1.sub.15.RDB2.conv2.0.weight',
                     'model.1.sub.15.RDB2.conv2.0.bias', 'model.1.sub.15.RDB2.conv3.0.weight',
                     'model.1.sub.15.RDB2.conv3.0.bias', 'model.1.sub.15.RDB2.conv4.0.weight',
                     'model.1.sub.15.RDB2.conv4.0.bias', 'model.1.sub.15.RDB2.conv5.0.weight',
                     'model.1.sub.15.RDB2.conv5.0.bias', 'model.1.sub.15.RDB3.conv1.0.weight',
                     'model.1.sub.15.RDB3.conv1.0.bias', 'model.1.sub.15.RDB3.conv2.0.weight',
                     'model.1.sub.15.RDB3.conv2.0.bias', 'model.1.sub.15.RDB3.conv3.0.weight',
                     'model.1.sub.15.RDB3.conv3.0.bias', 'model.1.sub.15.RDB3.conv4.0.weight',
                     'model.1.sub.15.RDB3.conv4.0.bias', 'model.1.sub.15.RDB3.conv5.0.weight',
                     'model.1.sub.15.RDB3.conv5.0.bias', 'model.1.sub.16.RDB1.conv1.0.weight',
                     'model.1.sub.16.RDB1.conv1.0.bias', 'model.1.sub.16.RDB1.conv2.0.weight',
                     'model.1.sub.16.RDB1.conv2.0.bias', 'model.1.sub.16.RDB1.conv3.0.weight',
                     'model.1.sub.16.RDB1.conv3.0.bias', 'model.1.sub.16.RDB1.conv4.0.weight',
                     'model.1.sub.16.RDB1.conv4.0.bias', 'model.1.sub.16.RDB1.conv5.0.weight',
                     'model.1.sub.16.RDB1.conv5.0.bias', 'model.1.sub.16.RDB2.conv1.0.weight',
                     'model.1.sub.16.RDB2.conv1.0.bias', 'model.1.sub.16.RDB2.conv2.0.weight',
                     'model.1.sub.16.RDB2.conv2.0.bias', 'model.1.sub.16.RDB2.conv3.0.weight',
                     'model.1.sub.16.RDB2.conv3.0.bias', 'model.1.sub.16.RDB2.conv4.0.weight',
                     'model.1.sub.16.RDB2.conv4.0.bias', 'model.1.sub.16.RDB2.conv5.0.weight',
                     'model.1.sub.16.RDB2.conv5.0.bias', 'model.1.sub.16.RDB3.conv1.0.weight',
                     'model.1.sub.16.RDB3.conv1.0.bias', 'model.1.sub.16.RDB3.conv2.0.weight',
                     'model.1.sub.16.RDB3.conv2.0.bias', 'model.1.sub.16.RDB3.conv3.0.weight',
                     'model.1.sub.16.RDB3.conv3.0.bias', 'model.1.sub.16.RDB3.conv4.0.weight',
                     'model.1.sub.16.RDB3.conv4.0.bias', 'model.1.sub.16.RDB3.conv5.0.weight',
                     'model.1.sub.16.RDB3.conv5.0.bias', 'model.1.sub.17.RDB1.conv1.0.weight',
                     'model.1.sub.17.RDB1.conv1.0.bias', 'model.1.sub.17.RDB1.conv2.0.weight',
                     'model.1.sub.17.RDB1.conv2.0.bias', 'model.1.sub.17.RDB1.conv3.0.weight',
                     'model.1.sub.17.RDB1.conv3.0.bias', 'model.1.sub.17.RDB1.conv4.0.weight',
                     'model.1.sub.17.RDB1.conv4.0.bias', 'model.1.sub.17.RDB1.conv5.0.weight',
                     'model.1.sub.17.RDB1.conv5.0.bias', 'model.1.sub.17.RDB2.conv1.0.weight',
                     'model.1.sub.17.RDB2.conv1.0.bias', 'model.1.sub.17.RDB2.conv2.0.weight',
                     'model.1.sub.17.RDB2.conv2.0.bias', 'model.1.sub.17.RDB2.conv3.0.weight',
                     'model.1.sub.17.RDB2.conv3.0.bias', 'model.1.sub.17.RDB2.conv4.0.weight',
                     'model.1.sub.17.RDB2.conv4.0.bias', 'model.1.sub.17.RDB2.conv5.0.weight',
                     'model.1.sub.17.RDB2.conv5.0.bias', 'model.1.sub.17.RDB3.conv1.0.weight',
                     'model.1.sub.17.RDB3.conv1.0.bias', 'model.1.sub.17.RDB3.conv2.0.weight',
                     'model.1.sub.17.RDB3.conv2.0.bias', 'model.1.sub.17.RDB3.conv3.0.weight',
                     'model.1.sub.17.RDB3.conv3.0.bias', 'model.1.sub.17.RDB3.conv4.0.weight',
                     'model.1.sub.17.RDB3.conv4.0.bias', 'model.1.sub.17.RDB3.conv5.0.weight',
                     'model.1.sub.17.RDB3.conv5.0.bias', 'model.1.sub.18.RDB1.conv1.0.weight',
                     'model.1.sub.18.RDB1.conv1.0.bias', 'model.1.sub.18.RDB1.conv2.0.weight',
                     'model.1.sub.18.RDB1.conv2.0.bias', 'model.1.sub.18.RDB1.conv3.0.weight',
                     'model.1.sub.18.RDB1.conv3.0.bias', 'model.1.sub.18.RDB1.conv4.0.weight',
                     'model.1.sub.18.RDB1.conv4.0.bias', 'model.1.sub.18.RDB1.conv5.0.weight',
                     'model.1.sub.18.RDB1.conv5.0.bias', 'model.1.sub.18.RDB2.conv1.0.weight',
                     'model.1.sub.18.RDB2.conv1.0.bias', 'model.1.sub.18.RDB2.conv2.0.weight',
                     'model.1.sub.18.RDB2.conv2.0.bias', 'model.1.sub.18.RDB2.conv3.0.weight',
                     'model.1.sub.18.RDB2.conv3.0.bias', 'model.1.sub.18.RDB2.conv4.0.weight',
                     'model.1.sub.18.RDB2.conv4.0.bias', 'model.1.sub.18.RDB2.conv5.0.weight',
                     'model.1.sub.18.RDB2.conv5.0.bias', 'model.1.sub.18.RDB3.conv1.0.weight',
                     'model.1.sub.18.RDB3.conv1.0.bias', 'model.1.sub.18.RDB3.conv2.0.weight',
                     'model.1.sub.18.RDB3.conv2.0.bias', 'model.1.sub.18.RDB3.conv3.0.weight',
                     'model.1.sub.18.RDB3.conv3.0.bias', 'model.1.sub.18.RDB3.conv4.0.weight',
                     'model.1.sub.18.RDB3.conv4.0.bias', 'model.1.sub.18.RDB3.conv5.0.weight',
                     'model.1.sub.18.RDB3.conv5.0.bias', 'model.1.sub.19.RDB1.conv1.0.weight',
                     'model.1.sub.19.RDB1.conv1.0.bias', 'model.1.sub.19.RDB1.conv2.0.weight',
                     'model.1.sub.19.RDB1.conv2.0.bias', 'model.1.sub.19.RDB1.conv3.0.weight',
                     'model.1.sub.19.RDB1.conv3.0.bias', 'model.1.sub.19.RDB1.conv4.0.weight',
                     'model.1.sub.19.RDB1.conv4.0.bias', 'model.1.sub.19.RDB1.conv5.0.weight',
                     'model.1.sub.19.RDB1.conv5.0.bias', 'model.1.sub.19.RDB2.conv1.0.weight',
                     'model.1.sub.19.RDB2.conv1.0.bias', 'model.1.sub.19.RDB2.conv2.0.weight',
                     'model.1.sub.19.RDB2.conv2.0.bias', 'model.1.sub.19.RDB2.conv3.0.weight',
                     'model.1.sub.19.RDB2.conv3.0.bias', 'model.1.sub.19.RDB2.conv4.0.weight',
                     'model.1.sub.19.RDB2.conv4.0.bias', 'model.1.sub.19.RDB2.conv5.0.weight',
                     'model.1.sub.19.RDB2.conv5.0.bias', 'model.1.sub.19.RDB3.conv1.0.weight',
                     'model.1.sub.19.RDB3.conv1.0.bias', 'model.1.sub.19.RDB3.conv2.0.weight',
                     'model.1.sub.19.RDB3.conv2.0.bias', 'model.1.sub.19.RDB3.conv3.0.weight',
                     'model.1.sub.19.RDB3.conv3.0.bias', 'model.1.sub.19.RDB3.conv4.0.weight',
                     'model.1.sub.19.RDB3.conv4.0.bias', 'model.1.sub.19.RDB3.conv5.0.weight',
                     'model.1.sub.19.RDB3.conv5.0.bias', 'model.1.sub.20.RDB1.conv1.0.weight',
                     'model.1.sub.20.RDB1.conv1.0.bias', 'model.1.sub.20.RDB1.conv2.0.weight',
                     'model.1.sub.20.RDB1.conv2.0.bias', 'model.1.sub.20.RDB1.conv3.0.weight',
                     'model.1.sub.20.RDB1.conv3.0.bias', 'model.1.sub.20.RDB1.conv4.0.weight',
                     'model.1.sub.20.RDB1.conv4.0.bias', 'model.1.sub.20.RDB1.conv5.0.weight',
                     'model.1.sub.20.RDB1.conv5.0.bias', 'model.1.sub.20.RDB2.conv1.0.weight',
                     'model.1.sub.20.RDB2.conv1.0.bias', 'model.1.sub.20.RDB2.conv2.0.weight',
                     'model.1.sub.20.RDB2.conv2.0.bias', 'model.1.sub.20.RDB2.conv3.0.weight',
                     'model.1.sub.20.RDB2.conv3.0.bias', 'model.1.sub.20.RDB2.conv4.0.weight',
                     'model.1.sub.20.RDB2.conv4.0.bias', 'model.1.sub.20.RDB2.conv5.0.weight',
                     'model.1.sub.20.RDB2.conv5.0.bias', 'model.1.sub.20.RDB3.conv1.0.weight',
                     'model.1.sub.20.RDB3.conv1.0.bias', 'model.1.sub.20.RDB3.conv2.0.weight',
                     'model.1.sub.20.RDB3.conv2.0.bias', 'model.1.sub.20.RDB3.conv3.0.weight',
                     'model.1.sub.20.RDB3.conv3.0.bias', 'model.1.sub.20.RDB3.conv4.0.weight',
                     'model.1.sub.20.RDB3.conv4.0.bias', 'model.1.sub.20.RDB3.conv5.0.weight',
                     'model.1.sub.20.RDB3.conv5.0.bias', 'model.1.sub.21.RDB1.conv1.0.weight',
                     'model.1.sub.21.RDB1.conv1.0.bias', 'model.1.sub.21.RDB1.conv2.0.weight',
                     'model.1.sub.21.RDB1.conv2.0.bias', 'model.1.sub.21.RDB1.conv3.0.weight',
                     'model.1.sub.21.RDB1.conv3.0.bias', 'model.1.sub.21.RDB1.conv4.0.weight',
                     'model.1.sub.21.RDB1.conv4.0.bias', 'model.1.sub.21.RDB1.conv5.0.weight',
                     'model.1.sub.21.RDB1.conv5.0.bias', 'model.1.sub.21.RDB2.conv1.0.weight',
                     'model.1.sub.21.RDB2.conv1.0.bias', 'model.1.sub.21.RDB2.conv2.0.weight',
                     'model.1.sub.21.RDB2.conv2.0.bias', 'model.1.sub.21.RDB2.conv3.0.weight',
                     'model.1.sub.21.RDB2.conv3.0.bias', 'model.1.sub.21.RDB2.conv4.0.weight',
                     'model.1.sub.21.RDB2.conv4.0.bias', 'model.1.sub.21.RDB2.conv5.0.weight',
                     'model.1.sub.21.RDB2.conv5.0.bias', 'model.1.sub.21.RDB3.conv1.0.weight',
                     'model.1.sub.21.RDB3.conv1.0.bias', 'model.1.sub.21.RDB3.conv2.0.weight',
                     'model.1.sub.21.RDB3.conv2.0.bias', 'model.1.sub.21.RDB3.conv3.0.weight',
                     'model.1.sub.21.RDB3.conv3.0.bias', 'model.1.sub.21.RDB3.conv4.0.weight',
                     'model.1.sub.21.RDB3.conv4.0.bias', 'model.1.sub.21.RDB3.conv5.0.weight',
                     'model.1.sub.21.RDB3.conv5.0.bias', 'model.1.sub.22.RDB1.conv1.0.weight',
                     'model.1.sub.22.RDB1.conv1.0.bias', 'model.1.sub.22.RDB1.conv2.0.weight',
                     'model.1.sub.22.RDB1.conv2.0.bias', 'model.1.sub.22.RDB1.conv3.0.weight',
                     'model.1.sub.22.RDB1.conv3.0.bias', 'model.1.sub.22.RDB1.conv4.0.weight',
                     'model.1.sub.22.RDB1.conv4.0.bias', 'model.1.sub.22.RDB1.conv5.0.weight',
                     'model.1.sub.22.RDB1.conv5.0.bias', 'model.1.sub.22.RDB2.conv1.0.weight',
                     'model.1.sub.22.RDB2.conv1.0.bias', 'model.1.sub.22.RDB2.conv2.0.weight',
                     'model.1.sub.22.RDB2.conv2.0.bias', 'model.1.sub.22.RDB2.conv3.0.weight',
                     'model.1.sub.22.RDB2.conv3.0.bias', 'model.1.sub.22.RDB2.conv4.0.weight',
                     'model.1.sub.22.RDB2.conv4.0.bias', 'model.1.sub.22.RDB2.conv5.0.weight',
                     'model.1.sub.22.RDB2.conv5.0.bias', 'model.1.sub.22.RDB3.conv1.0.weight',
                     'model.1.sub.22.RDB3.conv1.0.bias', 'model.1.sub.22.RDB3.conv2.0.weight',
                     'model.1.sub.22.RDB3.conv2.0.bias', 'model.1.sub.22.RDB3.conv3.0.weight',
                     'model.1.sub.22.RDB3.conv3.0.bias', 'model.1.sub.22.RDB3.conv4.0.weight',
                     'model.1.sub.22.RDB3.conv4.0.bias', 'model.1.sub.22.RDB3.conv5.0.weight',
                     'model.1.sub.22.RDB3.conv5.0.bias', 'model.1.sub.23.weight', 'model.1.sub.23.bias',
                     'model.3.weight', 'model.3.bias', 'model.6.weight', 'model.6.bias', 'model.8.weight',
                     'model.8.bias', 'model.10.weight', 'model.10.bias']


# Borrowed from https://github.com/rlaphoenix/VSGAN/blob/master/vsgan/archs/ESRGAN.py
# Which enhanced stuff that was already here
class RRDBNet(nn.Module):
    def __init__(
            self,
            state_dict,
            norm=None,
            act: str = "leakyrelu",
            upsampler: str = "upconv",
            mode: B.ConvMode = "CNA",
    ) -> None:
        """
        ESRGAN - Enhanced Super-Resolution Generative Adversarial Networks.
        By Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
        and Chen Change Loy.
        This is old-arch Residual in Residual Dense Block Network and is not
        the newest revision that's available at github.com/xinntao/ESRGAN.
        This is on purpose, the newest Network has severely limited the
        potential use of the Network with no benefits.
        This network supports model files from both new and old-arch.
        Args:
            norm: Normalization layer
            act: Activation layer
            upsampler: Upsample layer. upconv, pixel_shuffle
            mode: Convolution mode
        """
        super(RRDBNet, self).__init__()
        self.model_arch = "ESRGAN"
        self.sub_type = "SR"

        self.state = state_dict
        self.norm = norm
        self.act = act
        self.upsampler = upsampler
        self.mode = mode

        self.state_map = {
            # currently supports old, new, and newer RRDBNet arch models
            # ESRGAN, BSRGAN/RealSR, Real-ESRGAN
            "model.0.weight": ("conv_first.weight",),
            "model.0.bias": ("conv_first.bias",),
            "model.1.sub./NB/.weight": ("trunk_conv.weight", "conv_body.weight"),
            "model.1.sub./NB/.bias": ("trunk_conv.bias", "conv_body.bias"),
            r"model.1.sub.\1.RDB\2.conv\3.0.\4": (
                r"RRDB_trunk\.(\d+)\.RDB(\d)\.conv(\d+)\.(weight|bias)",
                r"body\.(\d+)\.rdb(\d)\.conv(\d+)\.(weight|bias)",
            ),
        }
        if "params_ema" in self.state:
            self.state = self.state["params_ema"]
            # self.model_arch = "RealESRGAN"
        self.num_blocks = self.get_num_blocks()
        self.plus = any("conv1x1" in k for k in self.state.keys())
        if self.plus:
            self.model_arch = "ESRGAN+"

        self.state = self.new_to_old_arch(self.state)

        self.key_arr = list(self.state.keys())

        self.in_nc: int = self.state[self.key_arr[0]].shape[1]
        self.out_nc: int = self.state[self.key_arr[-1]].shape[0]

        self.scale: int = self.get_scale()
        self.num_filters: int = self.state[self.key_arr[0]].shape[0]

        c2x2 = False
        if self.state["model.0.weight"].shape[-2] == 2:
            c2x2 = True
            self.scale = round(math.sqrt(self.scale / 4))
            self.model_arch = "ESRGAN-2c2"

        self.supports_fp16 = True
        self.supports_bfp16 = True
        self.min_size_restriction = None

        # Detect if pixelunshuffle was used (Real-ESRGAN)
        if self.in_nc in (self.out_nc * 4, self.out_nc * 16) and self.out_nc in (
                self.in_nc / 4,
                self.in_nc / 16,
        ):
            self.shuffle_factor = int(math.sqrt(self.in_nc / self.out_nc))
        else:
            self.shuffle_factor = None

        upsample_block = {
            "upconv": B.upconv_block,
            "pixel_shuffle": B.pixelshuffle_block,
        }.get(self.upsampler)
        if upsample_block is None:
            raise NotImplementedError(f"Upsample mode [{self.upsampler}] is not found")

        if self.scale == 3:
            upsample_blocks = upsample_block(
                in_nc=self.num_filters,
                out_nc=self.num_filters,
                upscale_factor=3,
                act_type=self.act,
                c2x2=c2x2,
            )
        else:
            upsample_blocks = [
                upsample_block(
                    in_nc=self.num_filters,
                    out_nc=self.num_filters,
                    act_type=self.act,
                    c2x2=c2x2,
                )
                for _ in range(int(math.log(self.scale, 2)))
            ]

        self.model = B.sequential(
            # fea conv
            B.conv_block(
                in_nc=self.in_nc,
                out_nc=self.num_filters,
                kernel_size=3,
                norm_type=None,
                act_type=None,
                c2x2=c2x2,
            ),
            B.ShortcutBlock(
                B.sequential(
                    # rrdb blocks
                    *[
                        B.RRDB(
                            nf=self.num_filters,
                            kernel_size=3,
                            gc=32,
                            stride=1,
                            bias=True,
                            pad_type="zero",
                            norm_type=self.norm,
                            act_type=self.act,
                            mode="CNA",
                            plus=self.plus,
                            c2x2=c2x2,
                        )
                        for _ in range(self.num_blocks)
                    ],
                    # lr conv
                    B.conv_block(
                        in_nc=self.num_filters,
                        out_nc=self.num_filters,
                        kernel_size=3,
                        norm_type=self.norm,
                        act_type=None,
                        mode=self.mode,
                        c2x2=c2x2,
                    ),
                )
            ),
            *upsample_blocks,
            # hr_conv0
            B.conv_block(
                in_nc=self.num_filters,
                out_nc=self.num_filters,
                kernel_size=3,
                norm_type=None,
                act_type=self.act,
                c2x2=c2x2,
            ),
            # hr_conv1
            B.conv_block(
                in_nc=self.num_filters,
                out_nc=self.out_nc,
                kernel_size=3,
                norm_type=None,
                act_type=None,
                c2x2=c2x2,
            ),
        )

        # Adjust these properties for calculations outside of the model
        if self.shuffle_factor:
            self.in_nc //= self.shuffle_factor ** 2
            self.scale //= self.shuffle_factor

        self.load_state_dict(self.state, strict=False)

    def new_to_old_arch(self, state):
        """Convert a new-arch model state dictionary to an old-arch dictionary."""
        if "params_ema" in state:
            state = state["params_ema"]

        if "conv_first.weight" not in state:
            # model is already old arch, this is a loose check, but should be sufficient
            return state

        # add nb to state keys
        for kind in ("weight", "bias"):
            self.state_map[f"model.1.sub.{self.num_blocks}.{kind}"] = self.state_map[
                f"model.1.sub./NB/.{kind}"
            ]
            del self.state_map[f"model.1.sub./NB/.{kind}"]

        old_state = OrderedDict()
        for old_key, new_keys in self.state_map.items():
            for new_key in new_keys:
                if r"\1" in old_key:
                    for k, v in state.items():
                        sub = re.sub(new_key, old_key, k)
                        if sub != k:
                            old_state[sub] = v
                else:
                    if new_key in state:
                        old_state[old_key] = state[new_key]

        # upconv layers
        max_upconv = 0
        for key in state.keys():
            match = re.match(r"(upconv|conv_up)(\d)\.(weight|bias)", key)
            if match is not None:
                _, key_num, key_type = match.groups()
                old_state[f"model.{int(key_num) * 3}.{key_type}"] = state[key]
                max_upconv = max(max_upconv, int(key_num) * 3)

        # final layers
        for key in state.keys():
            if key in ("HRconv.weight", "conv_hr.weight"):
                old_state[f"model.{max_upconv + 2}.weight"] = state[key]
            elif key in ("HRconv.bias", "conv_hr.bias"):
                old_state[f"model.{max_upconv + 2}.bias"] = state[key]
            elif key in ("conv_last.weight",):
                old_state[f"model.{max_upconv + 4}.weight"] = state[key]
            elif key in ("conv_last.bias",):
                old_state[f"model.{max_upconv + 4}.bias"] = state[key]

        # Sort by first numeric value of each layer
        def compare(item1, item2):
            parts1 = item1.split(".")
            parts2 = item2.split(".")
            int1 = int(parts1[1])
            int2 = int(parts2[1])
            return int1 - int2

        sorted_keys = sorted(old_state.keys(), key=functools.cmp_to_key(compare))

        # Rebuild the output dict in the right order
        out_dict = OrderedDict((k, old_state[k]) for k in sorted_keys)

        return out_dict

    def get_scale(self, min_part: int = 6) -> int:
        n = 0
        for part in list(self.state):
            parts = part.split(".")[1:]
            if len(parts) == 2:
                part_num = int(parts[0])
                if part_num > min_part and parts[1] == "weight":
                    n += 1
        return 2 ** n

    def get_num_blocks(self) -> int:
        nbs = []
        state_keys = self.state_map[r"model.1.sub.\1.RDB\2.conv\3.0.\4"] + (
            r"model\.\d+\.sub\.(\d+)\.RDB(\d+)\.conv(\d+)\.0\.(weight|bias)",
        )
        for state_key in state_keys:
            for k in self.state:
                m = re.search(state_key, k)
                if m:
                    nbs.append(int(m.group(1)))
            if nbs:
                break
        return max(*nbs) + 1

    def forward(self, x):
        if self.shuffle_factor:
            _, _, h, w = x.size()
            mod_pad_h = (
                                self.shuffle_factor - h % self.shuffle_factor
                        ) % self.shuffle_factor
            mod_pad_w = (
                                self.shuffle_factor - w % self.shuffle_factor
                        ) % self.shuffle_factor
            x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect")
            x = torch.pixel_unshuffle(x, downscale_factor=self.shuffle_factor)
            x = self.model(x)
            return x[:, :, : h * self.scale, : w * self.scale]
        return self.model(x)