File size: 12,463 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
from __future__ import division
from __future__ import unicode_literals
from typing import Iterable, Optional
import weakref
import copy
import contextlib
import torch
# Partially based on:
# https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/training/moving_averages.py
class ExponentialMovingAverage:
"""
Maintains (exponential) moving average of a set of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter` (typically from
`model.parameters()`).
Note that EMA is computed on *all* provided parameters,
regardless of whether or not they have `requires_grad = True`;
this allows a single EMA object to be consistantly used even
if which parameters are trainable changes step to step.
If you want to some parameters in the EMA, do not pass them
to the object in the first place. For example:
ExponentialMovingAverage(
parameters=[p for p in model.parameters() if p.requires_grad],
decay=0.9
)
will ignore parameters that do not require grad.
decay: The exponential decay.
use_num_updates: Whether to use number of updates when computing
averages.
"""
def __init__(
self,
parameters: Iterable[torch.nn.Parameter] = None,
decay: float = 0.995,
use_num_updates: bool = True,
# feeds back the decat to the parameter
use_feedback: bool = False
):
if parameters is None:
raise ValueError("parameters must be provided")
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.decay = decay
self.num_updates = 0 if use_num_updates else None
self.use_feedback = use_feedback
parameters = list(parameters)
self.shadow_params = [
p.clone().detach()
for p in parameters
]
self.collected_params = None
self._is_train_mode = True
# By maintaining only a weakref to each parameter,
# we maintain the old GC behaviour of ExponentialMovingAverage:
# if the model goes out of scope but the ExponentialMovingAverage
# is kept, no references to the model or its parameters will be
# maintained, and the model will be cleaned up.
self._params_refs = [weakref.ref(p) for p in parameters]
def _get_parameters(
self,
parameters: Optional[Iterable[torch.nn.Parameter]]
) -> Iterable[torch.nn.Parameter]:
if parameters is None:
parameters = [p() for p in self._params_refs]
if any(p is None for p in parameters):
raise ValueError(
"(One of) the parameters with which this "
"ExponentialMovingAverage "
"was initialized no longer exists (was garbage collected);"
" please either provide `parameters` explicitly or keep "
"the model to which they belong from being garbage "
"collected."
)
return parameters
else:
parameters = list(parameters)
if len(parameters) != len(self.shadow_params):
raise ValueError(
"Number of parameters passed as argument is different "
"from number of shadow parameters maintained by this "
"ExponentialMovingAverage"
)
return parameters
def update(
self,
parameters: Optional[Iterable[torch.nn.Parameter]] = None
) -> None:
"""
Update currently maintained parameters.
Call this every time the parameters are updated, such as the result of
the `optimizer.step()` call.
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the same set of
parameters used to initialize this object. If `None`, the
parameters with which this `ExponentialMovingAverage` was
initialized will be used.
"""
parameters = self._get_parameters(parameters)
decay = self.decay
if self.num_updates is not None:
self.num_updates += 1
decay = min(
decay,
(1 + self.num_updates) / (10 + self.num_updates)
)
one_minus_decay = 1.0 - decay
with torch.no_grad():
for s_param, param in zip(self.shadow_params, parameters):
tmp = (s_param - param)
# tmp will be a new tensor so we can do in-place
tmp.mul_(one_minus_decay)
s_param.sub_(tmp)
if self.use_feedback:
param.add_(tmp)
def copy_to(
self,
parameters: Optional[Iterable[torch.nn.Parameter]] = None
) -> None:
"""
Copy current averaged parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages. If `None`, the
parameters with which this `ExponentialMovingAverage` was
initialized will be used.
"""
parameters = self._get_parameters(parameters)
for s_param, param in zip(self.shadow_params, parameters):
param.data.copy_(s_param.data)
def store(
self,
parameters: Optional[Iterable[torch.nn.Parameter]] = None
) -> None:
"""
Save the current parameters for restoring later.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored. If `None`, the parameters of with which this
`ExponentialMovingAverage` was initialized will be used.
"""
parameters = self._get_parameters(parameters)
self.collected_params = [
param.clone()
for param in parameters
]
def restore(
self,
parameters: Optional[Iterable[torch.nn.Parameter]] = None
) -> None:
"""
Restore the parameters stored with the `store` method.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters. If `None`, the
parameters with which this `ExponentialMovingAverage` was
initialized will be used.
"""
if self.collected_params is None:
raise RuntimeError(
"This ExponentialMovingAverage has no `store()`ed weights "
"to `restore()`"
)
parameters = self._get_parameters(parameters)
for c_param, param in zip(self.collected_params, parameters):
param.data.copy_(c_param.data)
@contextlib.contextmanager
def average_parameters(
self,
parameters: Optional[Iterable[torch.nn.Parameter]] = None
):
r"""
Context manager for validation/inference with averaged parameters.
Equivalent to:
ema.store()
ema.copy_to()
try:
...
finally:
ema.restore()
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters. If `None`, the
parameters with which this `ExponentialMovingAverage` was
initialized will be used.
"""
parameters = self._get_parameters(parameters)
self.store(parameters)
self.copy_to(parameters)
try:
yield
finally:
self.restore(parameters)
def to(self, device=None, dtype=None) -> None:
r"""Move internal buffers of the ExponentialMovingAverage to `device`.
Args:
device: like `device` argument to `torch.Tensor.to`
"""
# .to() on the tensors handles None correctly
self.shadow_params = [
p.to(device=device, dtype=dtype)
if p.is_floating_point()
else p.to(device=device)
for p in self.shadow_params
]
if self.collected_params is not None:
self.collected_params = [
p.to(device=device, dtype=dtype)
if p.is_floating_point()
else p.to(device=device)
for p in self.collected_params
]
return
def state_dict(self) -> dict:
r"""Returns the state of the ExponentialMovingAverage as a dict."""
# Following PyTorch conventions, references to tensors are returned:
# "returns a reference to the state and not its copy!" -
# https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict
return {
"decay": self.decay,
"num_updates": self.num_updates,
"shadow_params": self.shadow_params,
"collected_params": self.collected_params
}
def load_state_dict(self, state_dict: dict) -> None:
r"""Loads the ExponentialMovingAverage state.
Args:
state_dict (dict): EMA state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# deepcopy, to be consistent with module API
state_dict = copy.deepcopy(state_dict)
self.decay = state_dict["decay"]
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.num_updates = state_dict["num_updates"]
assert self.num_updates is None or isinstance(self.num_updates, int), \
"Invalid num_updates"
self.shadow_params = state_dict["shadow_params"]
assert isinstance(self.shadow_params, list), \
"shadow_params must be a list"
assert all(
isinstance(p, torch.Tensor) for p in self.shadow_params
), "shadow_params must all be Tensors"
self.collected_params = state_dict["collected_params"]
if self.collected_params is not None:
assert isinstance(self.collected_params, list), \
"collected_params must be a list"
assert all(
isinstance(p, torch.Tensor) for p in self.collected_params
), "collected_params must all be Tensors"
assert len(self.collected_params) == len(self.shadow_params), \
"collected_params and shadow_params had different lengths"
if len(self.shadow_params) == len(self._params_refs):
# Consistant with torch.optim.Optimizer, cast things to consistant
# device and dtype with the parameters
params = [p() for p in self._params_refs]
# If parameters have been garbage collected, just load the state
# we were given without change.
if not any(p is None for p in params):
# ^ parameter references are still good
for i, p in enumerate(params):
self.shadow_params[i] = self.shadow_params[i].to(
device=p.device, dtype=p.dtype
)
if self.collected_params is not None:
self.collected_params[i] = self.collected_params[i].to(
device=p.device, dtype=p.dtype
)
else:
raise ValueError(
"Tried to `load_state_dict()` with the wrong number of "
"parameters in the saved state."
)
def eval(self):
if self._is_train_mode:
with torch.no_grad():
self.store()
self.copy_to()
self._is_train_mode = False
def train(self):
if not self._is_train_mode:
with torch.no_grad():
self.restore()
self._is_train_mode = True
|