crystantine's picture
Upload 129 files
e0e88f3
raw
history blame
13.4 kB
import torch
import copy
import re
import warnings
import numpy as np
from .adv_encode import advanced_encode_from_tokens, encode_token_weights_g, encode_token_weights_l, encode_token_weights, prepareXL
from comfy.sdxl_clip import SDXLClipModel
#sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
def replace_embeddings(max_token, prompt, replacements=None):
if replacements is None:
emb_lookup = []
else:
emb_lookup = replacements.copy()
max_token += len(emb_lookup)
def get_replacement(embedding):
for e, n in emb_lookup:
if torch.equal(embedding, e):
return n
return None
tokens = []
for x in prompt:
row = []
for i in range(len(x)):
emb = x[i][0]
if not torch.is_tensor(emb):
row.append(emb)
else:
n = get_replacement(emb)
if n is not None:
row.append(n)
else:
max_token += 1
row.append(max_token)
emb_lookup.append((emb,max_token))
tokens.append(row)
tokens = np.array(tokens)[:,1:-1].reshape(-1)
return (tokens, emb_lookup)
def unpad_prompt(end_token, prompt):
res = np.trim_zeros(prompt, 'b')
return np.trim_zeros(res-end_token, 'b')+end_token
class CLIPRegionsBasePrompt:
@classmethod
def INPUT_TYPES(s):
return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
RETURN_TYPES = ("CLIPREGION",)
FUNCTION = "init_prompt"
CATEGORY = "conditioning/cutoff"
def init_prompt(self, clip, text):
tokens = clip.tokenize(text, return_word_ids=True)
return ({
"clip" : clip,
"base_tokens" : tokens,
"regions" : [],
"targets" : [],
"weights" : [],
},)
def get_sublists(super_list, sub_list):
positions = []
for candidate_ind in (i for i,e in enumerate(super_list) if e==sub_list[0]):
if super_list[candidate_ind:candidate_ind+len(sub_list)] == sub_list:
positions.append(candidate_ind)
return positions
class CLIPSetRegion:
@classmethod
def INPUT_TYPES(s):
return {"required": {"clip_regions": ("CLIPREGION", ),
"region_text": ("STRING", {"multiline": True}),
"target_text": ("STRING", {"multiline": False}),
"weight": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.05})}}
RETURN_TYPES = ("CLIPREGION",)
FUNCTION = "add_clip_region"
CATEGORY = "conditioning/cutoff"
def add_clip_region(self, clip_regions, region_text, target_text, weight):
clip = clip_regions["clip"]
tokenizer = clip.tokenizer
base_tokens = clip_regions["base_tokens"]
if isinstance(base_tokens, dict):
base_tokens = base_tokens['g']
if hasattr(tokenizer, 'clip_g'):
tokenizer = tokenizer.clip_g
region_outputs = []
target_outputs = []
#strip input strings
region_text = region_text.strip()
target_text = target_text.strip()
endtoken = tokenizer.end_token
prompt_tokens, emb_lookup = replace_embeddings(endtoken, base_tokens)
for rt in region_text.split('\n'):
region_tokens = tokenizer.tokenize_with_weights(rt)
region_tokens, _ = replace_embeddings(endtoken, region_tokens, emb_lookup)
region_tokens = unpad_prompt(endtoken, region_tokens).tolist()
#calc region mask
region_length = len(region_tokens)
regions = get_sublists(list(prompt_tokens), region_tokens)
region_mask = np.zeros(len(prompt_tokens))
for r in regions:
region_mask[r:r+region_length] = 1
region_mask = region_mask.reshape(-1,tokenizer.max_length-2)
region_mask = np.pad(region_mask, pad_width=((0,0),(1,1)), mode='constant', constant_values=0)
region_mask = region_mask.reshape(1, -1)
region_outputs.append(region_mask)
#calc target mask
targets = []
for target in target_text.split(" "):
# deal with underscores
target = re.sub(r"(?<!\\)_", " ", target)
target = re.sub(r"\\_", "_", target)
target_tokens = tokenizer.tokenize_with_weights(target)
target_tokens, _ = replace_embeddings(endtoken, target_tokens, emb_lookup)
target_tokens = unpad_prompt(endtoken, target_tokens).tolist()
targets.extend([(x, len(target_tokens)) for x in get_sublists(region_tokens, target_tokens)])
targets = [(t_start + r, t_start + t_end + r) for r in regions for t_start, t_end in targets]
targets_mask = np.zeros(len(prompt_tokens))
for t_start, t_end in targets:
targets_mask[t_start: t_end] = 1
targets_mask = targets_mask.reshape(-1,tokenizer.max_length-2)
targets_mask = np.pad(targets_mask, pad_width=((0,0),(1,1)), mode='constant', constant_values=0)
targets_mask = targets_mask.reshape(1,-1)
target_outputs.append(targets_mask)
#prepare output
region_mask_list = clip_regions['regions'].copy()
region_mask_list.extend(region_outputs)
target_mask_list = clip_regions['targets'].copy()
target_mask_list.extend(target_outputs)
weight_list = clip_regions['weights'].copy()
weight_list.extend([weight]*len(region_outputs))
return ({
"clip" : clip,
"base_tokens" : clip_regions["base_tokens"],
"regions" : region_mask_list,
"targets" : target_mask_list,
"weights" : weight_list,
},)
def create_masked_prompt(weighted_tokens, mask, mask_token):
if isinstance(weighted_tokens, dict):
result = dict()
for k in weighted_tokens.keys():
result[k] = _create_masked_prompt(weighted_tokens[k], mask, mask_token)
return result
else:
return _create_masked_prompt(weighted_tokens, mask, mask_token)
def _create_masked_prompt(weighted_tokens, mask, mask_token):
mask_ids = list(zip(*np.nonzero(mask.reshape((len(weighted_tokens), -1)))))
new_prompt = copy.deepcopy(weighted_tokens)
for x,y in mask_ids:
new_prompt[x][y] = (mask_token,) + new_prompt[x][y][1:]
return new_prompt
def encode_from_tokens(clip, tokenized, token_normalization, weight_interpretation, return_pooled=False):
if isinstance(tokenized, dict):
embs_l = None
embs_g = None
pooled = None
if 'l' in tokenized and isinstance(clip.cond_stage_model, SDXLClipModel):
embs_l, _ = advanced_encode_from_tokens(tokenized['l'],
token_normalization,
weight_interpretation,
lambda x: encode_token_weights(clip, x, encode_token_weights_l),
w_max=1.0,
return_pooled=False)
if 'g' in tokenized:
embs_g, pooled = advanced_encode_from_tokens(tokenized['g'],
token_normalization,
weight_interpretation,
lambda x: encode_token_weights(clip, x, encode_token_weights_g),
w_max=1.0,
return_pooled=True)
emb, pool = prepareXL(embs_l, embs_g, pooled, .5)
else:
emb, pool = advanced_encode_from_tokens(tokenized,
token_normalization,
weight_interpretation,
lambda x: (clip.encode_from_tokens(x), None),
w_max=1.0)
if return_pooled:
return emb, pool
else:
return emb
def finalize_clip_regions(clip_regions, mask_token, strict_mask, start_from_masked, token_normalization='none', weight_interpretation='comfy'):
clip = clip_regions["clip"]
tokenizer = clip.tokenizer
if hasattr(tokenizer, 'clip_g'):
tokenizer = tokenizer.clip_g
base_weighted_tokens = clip_regions["base_tokens"]
if mask_token == "":
mask_token = 266#clip.tokenizer.end_token
else:
mask_token = tokenizer.tokenizer(mask_token)['input_ids'][1:-1]
if len(mask_token) > 1:
warnings.warn("mask_token does not map to a single token, using the first token instead")
mask_token = mask_token[0]
#calc global target mask
global_target_mask = np.any(np.stack(clip_regions["targets"]), axis=0).astype(int)
#calc global region mask
global_region_mask = np.any(np.stack(clip_regions["regions"]), axis=0).astype(float)
regions_sum = np.sum(np.stack(clip_regions["regions"]), axis=0)
regions_normalized = np.divide(1, regions_sum, out=np.zeros_like(regions_sum), where=regions_sum!=0)
#calc base embedding
base_embedding_full, pool = encode_from_tokens(clip, base_weighted_tokens, token_normalization, weight_interpretation, True)
base_embedding_masked = encode_from_tokens(clip, create_masked_prompt(base_weighted_tokens, global_target_mask, mask_token), token_normalization, weight_interpretation)
base_embedding_start = base_embedding_full * (1-start_from_masked) + base_embedding_masked * start_from_masked
base_embedding_outer = base_embedding_full * (1-strict_mask) + base_embedding_masked * strict_mask
region_embeddings = []
for region, target, weight in zip (clip_regions["regions"],clip_regions["targets"],clip_regions["weights"]):
region_masking = torch.tensor(regions_normalized * region * weight, dtype=base_embedding_full.dtype, device=base_embedding_full.device).unsqueeze(-1)
region_emb = encode_from_tokens(clip, create_masked_prompt(base_weighted_tokens, global_target_mask - target, mask_token), token_normalization, weight_interpretation)
region_emb -= base_embedding_start
region_emb *= region_masking
region_embeddings.append(region_emb)
region_embeddings = torch.stack(region_embeddings).sum(axis=0)
embeddings_final_mask = torch.tensor(global_region_mask, dtype=base_embedding_full.dtype, device=base_embedding_full.device).unsqueeze(-1)
embeddings_final = base_embedding_start * embeddings_final_mask + base_embedding_outer * (1 - embeddings_final_mask)
embeddings_final += region_embeddings
return ([[embeddings_final, {"pooled_output": pool}]], )
class CLIPRegionsToConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"clip_regions": ("CLIPREGION", ),
"mask_token": ("STRING", {"multiline": False, "default" : ""}),
"strict_mask": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}),
"start_from_masked": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05})}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "finalize"
CATEGORY = "conditioning/cutoff"
def finalize(self, clip_regions, mask_token, strict_mask, start_from_masked):
return finalize_clip_regions(clip_regions, mask_token, strict_mask, start_from_masked)
class CLIPRegionsToConditioningADV:
@classmethod
def INPUT_TYPES(s):
return {"required": {"clip_regions": ("CLIPREGION", ),
"mask_token": ("STRING", {"multiline": False, "default" : ""}),
"strict_mask": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}),
"start_from_masked": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}),
"token_normalization": (["none", "mean", "length", "length+mean"],),
"weight_interpretation": (["comfy", "A1111", "compel", "comfy++"],),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "finalize"
CATEGORY = "conditioning/cutoff"
def finalize(self, clip_regions, mask_token, strict_mask, start_from_masked, token_normalization, weight_interpretation):
return finalize_clip_regions(clip_regions, mask_token, strict_mask, start_from_masked, token_normalization, weight_interpretation)
NODE_CLASS_MAPPINGS = {
"BNK_CutoffBasePrompt": CLIPRegionsBasePrompt,
"BNK_CutoffSetRegions": CLIPSetRegion,
"BNK_CutoffRegionsToConditioning": CLIPRegionsToConditioning,
"BNK_CutoffRegionsToConditioning_ADV": CLIPRegionsToConditioningADV,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"BNK_CutoffBasePrompt": "Cutoff Base Prompt",
"BNK_CutoffSetRegions": "Cutoff Set Regions",
"BNK_CutoffRegionsToConditioning": "Cutoff Regions To Conditioning",
"BNK_CutoffRegionsToConditioning_ADV": "Cutoff Regions To Conditioning (ADV)",
}