File size: 4,958 Bytes
752fc68 3f9caad dd81ce5 acc4dea bf6073f dd81ce5 4336fdc 0cf862c dd81ce5 acc4dea bf6073f dd81ce5 4336fdc 0cf862c 752fc68 c40b2a7 70c838d c40b2a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
license: apache-2.0
dataset_info:
- config_name: mmc_en
features:
- name: doc_name
dtype: string
- name: sentences
sequence:
sequence:
sequence: string
- name: coref_chains
sequence:
sequence:
sequence: int64
splits:
- name: train
num_bytes: 28164357
num_examples: 955
- name: dev
num_bytes: 4043571
num_examples: 134
- name: test
num_bytes: 3103262
num_examples: 133
download_size: 3609139
dataset_size: 35311190
- config_name: mmc_fa
features:
- name: doc_name
dtype: string
- name: sentences
sequence:
sequence:
sequence: string
- name: coref_chains
sequence:
sequence:
sequence: int64
splits:
- name: train
num_bytes: 22553374
num_examples: 950
- name: dev
num_bytes: 3579538
num_examples: 134
- name: test
num_bytes: 2480699
num_examples: 133
download_size: 2969009
dataset_size: 28613611
- config_name: mmc_fa_corrected
features:
- name: doc_name
dtype: string
- name: sentences
sequence:
sequence:
sequence: string
- name: coref_chains
sequence:
sequence:
sequence: int64
splits:
- name: train
num_bytes: 22553374
num_examples: 950
- name: dev
num_bytes: 3579538
num_examples: 134
- name: test
num_bytes: 2512884
num_examples: 133
download_size: 2975807
dataset_size: 28645796
- config_name: mmc_zh_corrected
features:
- name: doc_name
dtype: string
- name: sentences
sequence:
sequence:
sequence: string
- name: coref_chains
sequence:
sequence:
sequence: int64
splits:
- name: train
num_bytes: 29749762
num_examples: 948
- name: dev
num_bytes: 4442503
num_examples: 134
- name: test
num_bytes: 2240351
num_examples: 133
download_size: 3416567
dataset_size: 36432616
- config_name: mmc_zh_uncorrected
features:
- name: doc_name
dtype: string
- name: sentences
sequence:
sequence:
sequence: string
- name: coref_chains
sequence:
sequence:
sequence: int64
splits:
- name: train
num_bytes: 29749762
num_examples: 948
- name: dev
num_bytes: 4442503
num_examples: 134
- name: test
num_bytes: 3373346
num_examples: 133
download_size: 3457199
dataset_size: 37565611
configs:
- config_name: mmc_en
data_files:
- split: train
path: mmc_en/train-*
- split: dev
path: mmc_en/dev-*
- split: test
path: mmc_en/test-*
- config_name: mmc_fa
data_files:
- split: train
path: mmc_fa/train-*
- split: dev
path: mmc_fa/dev-*
- split: test
path: mmc_fa/test-*
- config_name: mmc_fa_corrected
data_files:
- split: train
path: mmc_fa_corrected/train-*
- split: dev
path: mmc_fa_corrected/dev-*
- split: test
path: mmc_fa_corrected/test-*
- config_name: mmc_zh_corrected
data_files:
- split: train
path: mmc_zh_corrected/train-*
- split: dev
path: mmc_zh_corrected/dev-*
- split: test
path: mmc_zh_corrected/test-*
- config_name: mmc_zh_uncorrected
data_files:
- split: train
path: mmc_zh_uncorrected/train-*
- split: dev
path: mmc_zh_uncorrected/dev-*
- split: test
path: mmc_zh_uncorrected/test-*
---
# MMC (Multilingual Multiparty Coreference)
- Project: https://github.com/boyuanzheng010/mmc
- Data source: https://github.com/boyuanzheng010/mmc/commit/a7007d1d4556a3f4347a3d7b686f71d66bd1e2d9
## Details
Data for the paper "Multilingual Coreference Resolution in Multiparty Dialogue" TACL 2023
## Citation
```
@article{zheng-etal-2023-multilingual,
title = "Multilingual Coreference Resolution in Multiparty Dialogue",
author = "Zheng, Boyuan and
Xia, Patrick and
Yarmohammadi, Mahsa and
Van Durme, Benjamin",
journal = "Transactions of the Association for Computational Linguistics",
volume = "11",
year = "2023",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2023.tacl-1.52",
doi = "10.1162/tacl_a_00581",
pages = "922--940",
abstract = "Existing multiparty dialogue datasets for entity coreference resolution are nascent, and many challenges are still unaddressed. We create a large-scale dataset, Multilingual Multiparty Coref (MMC), for this task based on TV transcripts. Due to the availability of gold-quality subtitles in multiple languages, we propose reusing the annotations to create silver coreference resolution data in other languages (Chinese and Farsi) via annotation projection. On the gold (English) data, off-the-shelf models perform relatively poorly on MMC, suggesting that MMC has broader coverage of multiparty coreference than prior datasets. On the silver data, we find success both using it for data augmentation and training from scratch, which effectively simulates the zero-shot cross-lingual setting.",
}
``` |