Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
File size: 4,958 Bytes
752fc68
3f9caad
dd81ce5
acc4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6073f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd81ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4336fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cf862c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd81ce5
acc4dea
 
 
 
 
 
 
 
bf6073f
 
 
 
 
 
 
 
dd81ce5
 
 
 
 
 
 
 
4336fdc
 
 
 
 
 
 
 
0cf862c
 
 
 
 
 
 
 
752fc68
c40b2a7
70c838d
c40b2a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
license: apache-2.0
dataset_info:
- config_name: mmc_en
  features:
  - name: doc_name
    dtype: string
  - name: sentences
    sequence:
      sequence:
        sequence: string
  - name: coref_chains
    sequence:
      sequence:
        sequence: int64
  splits:
  - name: train
    num_bytes: 28164357
    num_examples: 955
  - name: dev
    num_bytes: 4043571
    num_examples: 134
  - name: test
    num_bytes: 3103262
    num_examples: 133
  download_size: 3609139
  dataset_size: 35311190
- config_name: mmc_fa
  features:
  - name: doc_name
    dtype: string
  - name: sentences
    sequence:
      sequence:
        sequence: string
  - name: coref_chains
    sequence:
      sequence:
        sequence: int64
  splits:
  - name: train
    num_bytes: 22553374
    num_examples: 950
  - name: dev
    num_bytes: 3579538
    num_examples: 134
  - name: test
    num_bytes: 2480699
    num_examples: 133
  download_size: 2969009
  dataset_size: 28613611
- config_name: mmc_fa_corrected
  features:
  - name: doc_name
    dtype: string
  - name: sentences
    sequence:
      sequence:
        sequence: string
  - name: coref_chains
    sequence:
      sequence:
        sequence: int64
  splits:
  - name: train
    num_bytes: 22553374
    num_examples: 950
  - name: dev
    num_bytes: 3579538
    num_examples: 134
  - name: test
    num_bytes: 2512884
    num_examples: 133
  download_size: 2975807
  dataset_size: 28645796
- config_name: mmc_zh_corrected
  features:
  - name: doc_name
    dtype: string
  - name: sentences
    sequence:
      sequence:
        sequence: string
  - name: coref_chains
    sequence:
      sequence:
        sequence: int64
  splits:
  - name: train
    num_bytes: 29749762
    num_examples: 948
  - name: dev
    num_bytes: 4442503
    num_examples: 134
  - name: test
    num_bytes: 2240351
    num_examples: 133
  download_size: 3416567
  dataset_size: 36432616
- config_name: mmc_zh_uncorrected
  features:
  - name: doc_name
    dtype: string
  - name: sentences
    sequence:
      sequence:
        sequence: string
  - name: coref_chains
    sequence:
      sequence:
        sequence: int64
  splits:
  - name: train
    num_bytes: 29749762
    num_examples: 948
  - name: dev
    num_bytes: 4442503
    num_examples: 134
  - name: test
    num_bytes: 3373346
    num_examples: 133
  download_size: 3457199
  dataset_size: 37565611
configs:
- config_name: mmc_en
  data_files:
  - split: train
    path: mmc_en/train-*
  - split: dev
    path: mmc_en/dev-*
  - split: test
    path: mmc_en/test-*
- config_name: mmc_fa
  data_files:
  - split: train
    path: mmc_fa/train-*
  - split: dev
    path: mmc_fa/dev-*
  - split: test
    path: mmc_fa/test-*
- config_name: mmc_fa_corrected
  data_files:
  - split: train
    path: mmc_fa_corrected/train-*
  - split: dev
    path: mmc_fa_corrected/dev-*
  - split: test
    path: mmc_fa_corrected/test-*
- config_name: mmc_zh_corrected
  data_files:
  - split: train
    path: mmc_zh_corrected/train-*
  - split: dev
    path: mmc_zh_corrected/dev-*
  - split: test
    path: mmc_zh_corrected/test-*
- config_name: mmc_zh_uncorrected
  data_files:
  - split: train
    path: mmc_zh_uncorrected/train-*
  - split: dev
    path: mmc_zh_uncorrected/dev-*
  - split: test
    path: mmc_zh_uncorrected/test-*
---

# MMC (Multilingual Multiparty Coreference)

- Project: https://github.com/boyuanzheng010/mmc
- Data source: https://github.com/boyuanzheng010/mmc/commit/a7007d1d4556a3f4347a3d7b686f71d66bd1e2d9

## Details

Data for the paper "Multilingual Coreference Resolution in Multiparty Dialogue" TACL 2023

## Citation
```
@article{zheng-etal-2023-multilingual,
    title = "Multilingual Coreference Resolution in Multiparty Dialogue",
    author = "Zheng, Boyuan  and
      Xia, Patrick  and
      Yarmohammadi, Mahsa  and
      Van Durme, Benjamin",
    journal = "Transactions of the Association for Computational Linguistics",
    volume = "11",
    year = "2023",
    address = "Cambridge, MA",
    publisher = "MIT Press",
    url = "https://aclanthology.org/2023.tacl-1.52",
    doi = "10.1162/tacl_a_00581",
    pages = "922--940",
    abstract = "Existing multiparty dialogue datasets for entity coreference resolution are nascent, and many challenges are still unaddressed. We create a large-scale dataset, Multilingual Multiparty Coref (MMC), for this task based on TV transcripts. Due to the availability of gold-quality subtitles in multiple languages, we propose reusing the annotations to create silver coreference resolution data in other languages (Chinese and Farsi) via annotation projection. On the gold (English) data, off-the-shelf models perform relatively poorly on MMC, suggesting that MMC has broader coverage of multiparty coreference than prior datasets. On the silver data, we find success both using it for data augmentation and training from scratch, which effectively simulates the zero-shot cross-lingual setting.",
}
```