File size: 4,630 Bytes
6e5cc8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
defaults:
# Train Script
logdir: /dev/null
seed: 0
task: dmc_walker_walk
envs: 1
envs_parallel: none
render_size: [64, 64]
dmc_camera: -1
atari_grayscale: True
time_limit: 0
action_repeat: 1
# steps: 1e7
steps: 2e5
log_every: 1e4
eval_every: 1e5
eval_eps: 1
prefill: 10000
pretrain: 1
train_every: 5
train_steps: 1
expl_until: 0
replay: {capacity: 2e6, ongoing: False, minlen: 50, maxlen: 50, prioritize_ends: True}
dataset: {batch: 16, length: 50}
log_keys_video: ['image']
log_keys_sum: '^$'
log_keys_mean: '^$'
log_keys_max: '^$'
precision: 16
jit: True
offline_dir: [none]
offline_model_train_steps: 25001
offline_model_loaddir: none
offline_lmbd: 5.0
offline_penalty_type: none
offline_model_save_every: 5000
offline_split_val: False
offline_tune_lmbd: False
offline_lmbd_cons: 1.5
offline_model_dataset: {batch: 64, length: 50}
offline_train_dataset: {batch: 64, length: 50}
# Agent
clip_rewards: tanh
expl_behavior: greedy
expl_noise: 0.0
eval_noise: 0.0
eval_state_mean: False
# World Model
grad_heads: [decoder, reward, discount]
pred_discount: True
rssm: {ensemble: 7, hidden: 1024, deter: 1024, stoch: 32, discrete: 32, act: elu, norm: none, std_act: sigmoid2, min_std: 0.1}
encoder: {mlp_keys: '.*', cnn_keys: '.*', act: elu, norm: none, cnn_depth: 48, cnn_kernels: [4, 4, 4, 4], mlp_layers: [400, 400, 400, 400]}
decoder: {mlp_keys: '.*', cnn_keys: '.*', act: elu, norm: none, cnn_depth: 48, cnn_kernels: [5, 5, 6, 6], mlp_layers: [400, 400, 400, 400]}
reward_head: {layers: 4, units: 400, act: elu, norm: none, dist: mse}
discount_head: {layers: 4, units: 400, act: elu, norm: none, dist: binary}
loss_scales: {kl: 1.0, reward: 1.0, discount: 1.0, proprio: 1.0}
kl: {free: 0.0, forward: False, balance: 0.8, free_avg: True}
model_opt: {opt: adam, lr: 1e-4, eps: 1e-5, clip: 100, wd: 1e-6}
# Actor Critic
actor: {layers: 4, units: 400, act: elu, norm: none, dist: auto, min_std: 0.1}
critic: {layers: 4, units: 400, act: elu, norm: none, dist: mse}
actor_opt: {opt: adam, lr: 8e-5, eps: 1e-5, clip: 100, wd: 1e-6}
critic_opt: {opt: adam, lr: 2e-4, eps: 1e-5, clip: 100, wd: 1e-6}
discount: 0.99
discount_lambda: 0.95
imag_horizon: 5
actor_grad: auto
actor_grad_mix: 0.1
actor_ent: 2e-3
slow_target: True
slow_target_update: 100
slow_target_fraction: 1
slow_baseline: True
reward_norm: {momentum: 1.0, scale: 1.0, eps: 1e-8}
# Exploration
expl_intr_scale: 1.0
expl_extr_scale: 0.0
expl_opt: {opt: adam, lr: 3e-4, eps: 1e-5, clip: 100, wd: 1e-6}
expl_head: {layers: 4, units: 400, act: elu, norm: none, dist: mse}
expl_reward_norm: {momentum: 1.0, scale: 1.0, eps: 1e-8}
disag_target: stoch
disag_log: False
disag_models: 10
disag_offset: 1
disag_action_cond: True
expl_model_loss: kl
atari:
task: atari_pong
encoder: {mlp_keys: '$^', cnn_keys: 'image'}
decoder: {mlp_keys: '$^', cnn_keys: 'image'}
time_limit: 27000
action_repeat: 4
steps: 5e7
eval_every: 2.5e5
log_every: 1e4
prefill: 50000
train_every: 16
clip_rewards: tanh
rssm: {hidden: 600, deter: 600}
model_opt.lr: 2e-4
actor_opt.lr: 4e-5
critic_opt.lr: 1e-4
actor_ent: 1e-3
discount: 0.999
loss_scales.kl: 0.1
loss_scales.discount: 5.0
crafter:
task: crafter_reward
encoder: {mlp_keys: '$^', cnn_keys: 'image'}
decoder: {mlp_keys: '$^', cnn_keys: 'image'}
log_keys_max: '^log_achievement_.*'
log_keys_sum: '^log_reward$'
discount: 0.999
.*\.norm: layer
dmc_vision:
task: dmc_walker_walk
encoder: {mlp_keys: '$^', cnn_keys: 'image'}
decoder: {mlp_keys: '$^', cnn_keys: 'image'}
action_repeat: 2
eval_every: 1e4
prefill: 1000
pretrain: 100
clip_rewards: identity
pred_discount: False
replay.prioritize_ends: False
grad_heads: [decoder, reward]
rssm: {hidden: 200, deter: 200}
model_opt.lr: 3e-4
actor_opt.lr: 8e-5
critic_opt.lr: 8e-5
actor_ent: 1e-4
kl.free: 1.0
dmc_proprio:
task: dmc_walker_walk
encoder: {mlp_keys: '.*', cnn_keys: '$^'}
decoder: {mlp_keys: '.*', cnn_keys: '$^'}
action_repeat: 2
eval_every: 1e4
prefill: 1000
pretrain: 100
clip_rewards: identity
pred_discount: False
replay.prioritize_ends: False
grad_heads: [decoder, reward]
rssm: {hidden: 200, deter: 200}
model_opt.lr: 3e-4
actor_opt.lr: 8e-5
critic_opt.lr: 8e-5
actor_ent: 1e-4
kl.free: 1.0
debug:
jit: False
time_limit: 100
eval_every: 300
log_every: 300
prefill: 100
pretrain: 1
train_steps: 1
replay: {minlen: 10, maxlen: 30}
dataset: {batch: 10, length: 10}
|