albertvillanova's picture
Replace YAML keys from int to str (#1)
fced99e
metadata
annotations_creators:
  - machine-generated
language_creators:
  - expert-generated
language:
  - tr
license:
  - cc-by-4.0
multilinguality:
  - monolingual
size_categories:
  - 100K<n<1M
source_datasets:
  - extended|other-turkish_ner
task_categories:
  - token-classification
task_ids:
  - named-entity-recognition
pretty_name: TurkishShrinkedNer
dataset_info:
  features:
    - name: id
      dtype: string
    - name: tokens
      sequence: string
    - name: ner_tags
      sequence:
        class_label:
          names:
            '0': O
            '1': B-academic
            '2': I-academic
            '3': B-academic_person
            '4': I-academic_person
            '5': B-aircraft
            '6': I-aircraft
            '7': B-album_person
            '8': I-album_person
            '9': B-anatomy
            '10': I-anatomy
            '11': B-animal
            '12': I-animal
            '13': B-architect_person
            '14': I-architect_person
            '15': B-capital
            '16': I-capital
            '17': B-chemical
            '18': I-chemical
            '19': B-clothes
            '20': I-clothes
            '21': B-country
            '22': I-country
            '23': B-culture
            '24': I-culture
            '25': B-currency
            '26': I-currency
            '27': B-date
            '28': I-date
            '29': B-food
            '30': I-food
            '31': B-genre
            '32': I-genre
            '33': B-government
            '34': I-government
            '35': B-government_person
            '36': I-government_person
            '37': B-language
            '38': I-language
            '39': B-location
            '40': I-location
            '41': B-material
            '42': I-material
            '43': B-measure
            '44': I-measure
            '45': B-medical
            '46': I-medical
            '47': B-military
            '48': I-military
            '49': B-military_person
            '50': I-military_person
            '51': B-nation
            '52': I-nation
            '53': B-newspaper
            '54': I-newspaper
            '55': B-organization
            '56': I-organization
            '57': B-organization_person
            '58': I-organization_person
            '59': B-person
            '60': I-person
            '61': B-production_art_music
            '62': I-production_art_music
            '63': B-production_art_music_person
            '64': I-production_art_music_person
            '65': B-quantity
            '66': I-quantity
            '67': B-religion
            '68': I-religion
            '69': B-science
            '70': I-science
            '71': B-shape
            '72': I-shape
            '73': B-ship
            '74': I-ship
            '75': B-software
            '76': I-software
            '77': B-space
            '78': I-space
            '79': B-space_person
            '80': I-space_person
            '81': B-sport
            '82': I-sport
            '83': B-sport_name
            '84': I-sport_name
            '85': B-sport_person
            '86': I-sport_person
            '87': B-structure
            '88': I-structure
            '89': B-subject
            '90': I-subject
            '91': B-tech
            '92': I-tech
            '93': B-train
            '94': I-train
            '95': B-vehicle
            '96': I-vehicle
  splits:
    - name: train
      num_bytes: 200728389
      num_examples: 614515
  download_size: 0
  dataset_size: 200728389

Dataset Card for turkish_shrinked_ner

Table of Contents

Dataset Description

Dataset Summary

Shrinked processed version (48 entity type) of the turkish_ner.

Original turkish_ner dataset: Automatically annotated Turkish corpus for named entity recognition and text categorization using large-scale gazetteers. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 25 different domains.

Shrinked entity types are: academic, academic_person, aircraft, album_person, anatomy, animal, architect_person, capital, chemical, clothes, country, culture, currency, date, food, genre, government, government_person, language, location, material, measure, medical, military, military_person, nation, newspaper, organization, organization_person, person, production_art_music, production_art_music_person, quantity, religion, science, shape, ship, software, space, space_person, sport, sport_name, sport_person, structure, subject, tech, train, vehicle

Supported Tasks and Leaderboards

[Needs More Information]

Languages

Turkish

Dataset Structure

Data Instances

[Needs More Information]

Data Fields

[Needs More Information]

Data Splits

There's only the training set.

Dataset Creation

Curation Rationale

[Needs More Information]

Source Data

Initial Data Collection and Normalization

[Needs More Information]

Who are the source language producers?

[Needs More Information]

Annotations

Annotation process

[Needs More Information]

Who are the annotators?

[Needs More Information]

Personal and Sensitive Information

[Needs More Information]

Considerations for Using the Data

Social Impact of Dataset

[Needs More Information]

Discussion of Biases

[Needs More Information]

Other Known Limitations

[Needs More Information]

Additional Information

Dataset Curators

Behcet Senturk

Licensing Information

Creative Commons Attribution 4.0 International

Citation Information

[Needs More Information]

Contributions

Thanks to @bhctsntrk for adding this dataset.