File size: 4,063 Bytes
1dd45ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c33b92c
1dd45ac
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TURKCorpus: a dataset for sentence simplification evaluation"""


import datasets


_CITATION = """\
 @article{Xu-EtAl:2016:TACL,
 author = {Wei Xu and Courtney Napoles and Ellie Pavlick and Quanze Chen and Chris Callison-Burch},
 title = {Optimizing Statistical Machine Translation for Text Simplification},
 journal = {Transactions of the Association for Computational Linguistics},
 volume = {4},
 year = {2016},
 url = {https://cocoxu.github.io/publications/tacl2016-smt-simplification.pdf},
 pages = {401--415}
 }
}
"""

_DESCRIPTION = """\
TURKCorpus is a dataset for evaluating sentence simplification systems that focus on lexical paraphrasing,
as described in "Optimizing Statistical Machine Translation for Text Simplification". The corpus is composed of 2000 validation and 359 test original sentences that were each simplified 8 times by different annotators.
"""

_HOMEPAGE = "https://github.com/cocoxu/simplification"

_LICENSE = "GNU General Public License v3.0"

_URL_LIST = [
    (
        "test.8turkers.tok.norm",
        "https://raw.githubusercontent.com/cocoxu/simplification/master/data/turkcorpus/test.8turkers.tok.norm",
    ),
    (
        "tune.8turkers.tok.norm",
        "https://raw.githubusercontent.com/cocoxu/simplification/master/data/turkcorpus/tune.8turkers.tok.norm",
    ),
]
_URL_LIST += [
    (
        f"{spl}.8turkers.tok.turk.{i}",
        f"https://raw.githubusercontent.com/cocoxu/simplification/master/data/turkcorpus/{spl}.8turkers.tok.turk.{i}",
    )
    for spl in ["tune", "test"]
    for i in range(8)
]

_URLs = dict(_URL_LIST)


class Turk(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="simplification",
            version=VERSION,
            description="A set of original sentences aligned with 8 possible simplifications for each.",
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "original": datasets.Value("string"),
                "simplifications": datasets.Sequence(datasets.Value("string")),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepaths": data_dir,
                    "split": "valid",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepaths": data_dir, "split": "test"},
            ),
        ]

    def _generate_examples(self, filepaths, split):
        """Yields examples."""
        if split == "valid":
            split = "tune"
        files = [open(filepaths[f"{split}.8turkers.tok.norm"], encoding="utf-8")] + [
            open(filepaths[f"{split}.8turkers.tok.turk.{i}"], encoding="utf-8") for i in range(8)
        ]
        for id_, lines in enumerate(zip(*files)):
            yield id_, {"original": lines[0].strip(), "simplifications": [line.strip() for line in lines[1:]]}