tapaco / tapaco.py
system's picture
system HF staff
Update files from the datasets library (from 1.2.0)
03abb9c
raw
history blame
7.51 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TaPaCo: A Corpus of Sentential Paraphrases for 73 Languages"""
from __future__ import absolute_import, division, print_function
import csv
import os
import datasets
_CITATION = """\
@dataset{scherrer_yves_2020_3707949,
author = {Scherrer, Yves},
title = {{TaPaCo: A Corpus of Sentential Paraphrases for 73 Languages}},
month = mar,
year = 2020,
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.3707949},
url = {https://doi.org/10.5281/zenodo.3707949}
}
"""
_DESCRIPTION = """\
A freely available paraphrase corpus for 73 languages extracted from the Tatoeba database. \
Tatoeba is a crowdsourcing project mainly geared towards language learners. Its aim is to provide example sentences \
and translations for particular linguistic constructions and words. The paraphrase corpus is created by populating a \
graph with Tatoeba sentences and equivalence links between sentences “meaning the same thing”. This graph is then \
traversed to extract sets of paraphrases. Several language-independent filters and pruning steps are applied to \
remove uninteresting sentences. A manual evaluation performed on three languages shows that between half and three \
quarters of inferred paraphrases are correct and that most remaining ones are either correct but trivial, \
or near-paraphrases that neutralize a morphological distinction. The corpus contains a total of 1.9 million \
sentences, with 200 – 250 000 sentences per language. It covers a range of languages for which, to our knowledge,\
no other paraphrase dataset exists."""
_HOMEPAGE = "https://zenodo.org/record/3707949#.X9Dh0cYza3I"
_LICENSE = "Creative Commons Attribution 2.0 Generic"
_URLs = {
"train": "https://zenodo.org/record/3707949/files/tapaco_v1.0.zip?download=1",
}
_VERSION = "1.0.0"
_LANGUAGES = {
"af": "Afrikaans",
"ar": "Arabic",
"az": "Azerbaijani",
"be": "Belarusian",
"ber": "Berber languages",
"bg": "Bulgarian",
"bn": "Bengali",
"br": "Breton",
"ca": "Catalan; Valencian",
"cbk": "Chavacano",
"cmn": "Mandarin",
"cs": "Czech",
"da": "Danish",
"de": "German",
"el": "Greek, Modern (1453-)",
"en": "English",
"eo": "Esperanto",
"es": "Spanish; Castilian",
"et": "Estonian",
"eu": "Basque",
"fi": "Finnish",
"fr": "French",
"gl": "Galician",
"gos": "Gronings",
"he": "Hebrew",
"hi": "Hindi",
"hr": "Croatian",
"hu": "Hungarian",
"hy": "Armenian",
"ia": "Interlingua (International Auxiliary Language Association)",
"id": "Indonesian",
"ie": "Interlingue; Occidental",
"io": "Ido",
"is": "Icelandic",
"it": "Italian",
"ja": "Japanese",
"jbo": "Lojban",
"kab": "Kabyle",
"ko": "Korean",
"kw": "Cornish",
"la": "Latin",
"lfn": "Lingua Franca Nova\t",
"lt": "Lithuanian",
"mk": "Macedonian",
"mr": "Marathi",
"nb": "Bokmål, Norwegian; Norwegian Bokmål",
"nds": "Low German; Low Saxon; German, Low; Saxon, Low",
"nl": "Dutch; Flemish",
"orv": "Old Russian",
"ota": "Turkish, Ottoman (1500-1928)",
"pes": "Iranian Persian",
"pl": "Polish",
"pt": "Portuguese",
"rn": "Rundi",
"ro": "Romanian; Moldavian; Moldovan",
"ru": "Russian",
"sl": "Slovenian",
"sr": "Serbian",
"sv": "Swedish",
"tk": "Turkmen",
"tl": "Tagalog",
"tlh": "Klingon; tlhIngan-Hol",
"toki": "Toki Pona",
"tr": "Turkish",
"tt": "Tatar",
"ug": "Uighur; Uyghur",
"uk": "Ukrainian",
"ur": "Urdu",
"vi": "Vietnamese",
"vo": "Volapük",
"war": "Waray",
"wuu": "Wu Chinese",
"yue": "Yue Chinese",
}
_ALL_LANGUAGES = "all_languages"
class TapacoConfig(datasets.BuilderConfig):
"""BuilderConfig for TapacoConfig."""
def __init__(self, languages=None, **kwargs):
super(TapacoConfig, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs),
self.languages = languages
class Tapaco(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
TapacoConfig(
name=_ALL_LANGUAGES,
languages=_LANGUAGES,
description="A collection of paraphrase corpus for 73 languages to aid paraphrase "
"detection and generation.",
)
] + [
TapacoConfig(
name=lang,
languages=[lang],
description=f"{_LANGUAGES[lang]} A collection of paraphrase corpus for 73 languages to "
f"aid paraphrase "
"detection and generation.",
)
for lang in _LANGUAGES
]
BUILDER_CONFIG_CLASS = TapacoConfig
DEFAULT_CONFIG_NAME = _ALL_LANGUAGES
def _info(self):
features = datasets.Features(
{
"paraphrase_set_id": datasets.Value("string"),
"sentence_id": datasets.Value("string"),
"paraphrase": datasets.Value("string"),
"lists": datasets.Sequence(datasets.Value("string")),
"tags": datasets.Sequence(datasets.Value("string")),
"language": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_dir": data_dir["train"]},
),
]
def _generate_examples(self, data_dir):
""" Yields examples. """
base_path = os.path.join(data_dir, "tapaco_v1.0")
file_dict = {lang: os.path.join(base_path, lang + ".txt") for lang in self.config.languages}
id_ = -1
for language, filepath in file_dict.items():
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(
csv_file, quotechar='"', delimiter="\t", quoting=csv.QUOTE_ALL, skipinitialspace=True
)
for row in csv_reader:
id_ += 1
paraphrase_set_id, sentence_id, paraphrase, lists, tags = row[: len(row)] + [""] * (5 - len(row))
yield id_, {
"paraphrase_set_id": paraphrase_set_id,
"sentence_id": sentence_id,
"paraphrase": paraphrase,
"lists": lists.split(";"),
"tags": tags.split(";"),
"language": language,
}