Datasets:
File size: 6,465 Bytes
11a0637 782629c 11a0637 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Annotated dataset of dialogues where users recommend movies to each other."""
import json
import os
import datasets
_CITATION = """\
@inproceedings{li2018conversational,
title={Towards Deep Conversational Recommendations},
author={Li, Raymond and Kahou, Samira Ebrahimi and Schulz, Hannes and Michalski, Vincent and Charlin, Laurent and Pal, Chris},
booktitle={Advances in Neural Information Processing Systems 31 (NIPS 2018)},
year={2018}
}
"""
_DESCRIPTION = """\
ReDial (Recommendation Dialogues) is an annotated dataset of dialogues, where users
recommend movies to each other. The dataset was collected by a team of researchers working at
Polytechnique Montréal, MILA – Quebec AI Institute, Microsoft Research Montréal, HEC Montreal, and Element AI.
The dataset allows research at the intersection of goal-directed dialogue systems
(such as restaurant recommendation) and free-form (also called “chit-chat”) dialogue systems.
"""
_HOMEPAGE = "https://redialdata.github.io/website/"
_LICENSE = "CC BY 4.0 License."
_DATA_URL = "https://github.com/ReDialData/website/raw/data/redial_dataset.zip"
class ReDial(datasets.GeneratorBasedBuilder):
"""Annotated dataset of dialogues where users recommend movies to each other."""
VERSION = datasets.Version("1.1.0")
def _info(self):
question_features = {
"movieId": datasets.Value("string"),
"suggested": datasets.Value("int32"),
"seen": datasets.Value("int32"),
"liked": datasets.Value("int32"),
}
features = datasets.Features(
{
"movieMentions": [
{
"movieId": datasets.Value("string"),
"movieName": datasets.Value("string"),
},
],
"respondentQuestions": [question_features],
"messages": [
{
"timeOffset": datasets.Value("int32"),
"text": datasets.Value("string"),
"senderWorkerId": datasets.Value("int32"),
"messageId": datasets.Value("int32"),
},
],
"conversationId": datasets.Value("int32"),
"respondentWorkerId": datasets.Value("int32"),
"initiatorWorkerId": datasets.Value("int32"),
"initiatorQuestions": [question_features],
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_DATA_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "train_data.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "test_data.jsonl"), "split": "test"},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
examples = f.readlines()
for id_, row in enumerate(examples):
data = json.loads(row.strip())
d = {}
movieMentions_list = []
for i in data["movieMentions"]:
d["movieId"] = i
d["movieName"] = data["movieMentions"][i]
movieMentions_list.append(d)
d = {}
respondentQuestions_list = []
for i in data["respondentQuestions"]:
d["movieId"] = i
alpha = data["respondentQuestions"][i]
z = {**d, **alpha} # merging 2 dictionaries
respondentQuestions_list.append(z)
d = {}
initiatorQuestions_list = []
for i in data["initiatorQuestions"]:
d["movieId"] = i
alpha = data["initiatorQuestions"][i]
z = {**d, **alpha} # merging 2 dictionaries
initiatorQuestions_list.append(z)
d = {}
yield id_, {
"movieMentions": movieMentions_list,
"respondentQuestions": respondentQuestions_list,
"messages": data["messages"],
"conversationId": data["conversationId"],
"respondentWorkerId": data["respondentWorkerId"],
"initiatorWorkerId": data["initiatorWorkerId"],
"initiatorQuestions": initiatorQuestions_list,
}
|