File size: 6,465 Bytes
11a0637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
782629c
11a0637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Annotated dataset of dialogues where users recommend movies to each other."""


import json
import os

import datasets


_CITATION = """\
@inproceedings{li2018conversational,
  title={Towards Deep Conversational Recommendations},
  author={Li, Raymond and Kahou, Samira Ebrahimi and Schulz, Hannes and Michalski, Vincent and Charlin, Laurent and Pal, Chris},
  booktitle={Advances in Neural Information Processing Systems 31 (NIPS 2018)},
  year={2018}
}
"""

_DESCRIPTION = """\
ReDial (Recommendation Dialogues) is an annotated dataset of dialogues, where users
recommend movies to each other. The dataset was collected by a team of researchers working at
Polytechnique Montréal, MILA – Quebec AI Institute, Microsoft Research Montréal, HEC Montreal, and Element AI.

The dataset allows research at the intersection of goal-directed dialogue systems
(such as restaurant recommendation) and free-form (also called “chit-chat”) dialogue systems.
"""

_HOMEPAGE = "https://redialdata.github.io/website/"

_LICENSE = "CC BY 4.0 License."

_DATA_URL = "https://github.com/ReDialData/website/raw/data/redial_dataset.zip"


class ReDial(datasets.GeneratorBasedBuilder):
    """Annotated dataset of dialogues where users recommend movies to each other."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        question_features = {
            "movieId": datasets.Value("string"),
            "suggested": datasets.Value("int32"),
            "seen": datasets.Value("int32"),
            "liked": datasets.Value("int32"),
        }
        features = datasets.Features(
            {
                "movieMentions": [
                    {
                        "movieId": datasets.Value("string"),
                        "movieName": datasets.Value("string"),
                    },
                ],
                "respondentQuestions": [question_features],
                "messages": [
                    {
                        "timeOffset": datasets.Value("int32"),
                        "text": datasets.Value("string"),
                        "senderWorkerId": datasets.Value("int32"),
                        "messageId": datasets.Value("int32"),
                    },
                ],
                "conversationId": datasets.Value("int32"),
                "respondentWorkerId": datasets.Value("int32"),
                "initiatorWorkerId": datasets.Value("int32"),
                "initiatorQuestions": [question_features],
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_DATA_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "train_data.jsonl"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": os.path.join(data_dir, "test_data.jsonl"), "split": "test"},
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""

        with open(filepath, encoding="utf-8") as f:
            examples = f.readlines()
            for id_, row in enumerate(examples):
                data = json.loads(row.strip())
                d = {}
                movieMentions_list = []
                for i in data["movieMentions"]:
                    d["movieId"] = i
                    d["movieName"] = data["movieMentions"][i]
                    movieMentions_list.append(d)
                    d = {}

                respondentQuestions_list = []
                for i in data["respondentQuestions"]:
                    d["movieId"] = i
                    alpha = data["respondentQuestions"][i]
                    z = {**d, **alpha}  # merging 2 dictionaries
                    respondentQuestions_list.append(z)
                    d = {}

                initiatorQuestions_list = []
                for i in data["initiatorQuestions"]:
                    d["movieId"] = i
                    alpha = data["initiatorQuestions"][i]
                    z = {**d, **alpha}  # merging 2 dictionaries
                    initiatorQuestions_list.append(z)
                    d = {}

                yield id_, {
                    "movieMentions": movieMentions_list,
                    "respondentQuestions": respondentQuestions_list,
                    "messages": data["messages"],
                    "conversationId": data["conversationId"],
                    "respondentWorkerId": data["respondentWorkerId"],
                    "initiatorWorkerId": data["initiatorWorkerId"],
                    "initiatorQuestions": initiatorQuestions_list,
                }