File size: 7,660 Bytes
7a79318 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""CRD3 dataset"""
from __future__ import absolute_import, division, print_function
import json
import os
import datasets
_CITATION = """
@misc{campos2020doqa,
title={DoQA -- Accessing Domain-Specific FAQs via Conversational QA},
author={Jon Ander Campos and Arantxa Otegi and Aitor Soroa and Jan Deriu and Mark Cieliebak and Eneko Agirre},
year={2020},
eprint={2005.01328},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """
DoQA is a dataset for accessing Domain Specific FAQs via conversational QA that contains 2,437 information-seeking question/answer dialogues
(10,917 questions in total) on three different domains: cooking, travel and movies. Note that we include in the generic concept of FAQs also
Community Question Answering sites, as well as corporate information in intranets which is maintained in textual form similar to FAQs, often
referred to as internal “knowledge bases”.
These dialogues are created by crowd workers that play the following two roles: the user who asks questions about a given topic posted in Stack
Exchange (https://stackexchange.com/), and the domain expert who replies to the questions by selecting a short span of text from the long textual
reply in the original post. The expert can rephrase the selected span, in order to make it look more natural. The dataset covers unanswerable
questions and some relevant dialogue acts.
DoQA enables the development and evaluation of conversational QA systems that help users access the knowledge buried in domain specific FAQs.
"""
_URL = "https://ixa2.si.ehu.es/convai/doqa-v2.1.zip"
class DoqaConfig(datasets.BuilderConfig):
"""BuilderConfig for DoQA."""
def __init__(self, **kwargs):
"""Constructs a DoQA.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(DoqaConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
class Doqa(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
DoqaConfig(
name="cooking",
),
DoqaConfig(
name="movies",
),
DoqaConfig(
name="travel",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"title": datasets.Value("string"),
"background": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"id": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
"followup": datasets.Value("string"),
"yesno": datasets.Value("string"),
"orig_answer": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
}
),
homepage="http://ixa.eus/node/12931",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
path = dl_manager.download_and_extract(_URL)
if self.config.name == "cooking":
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(path, "doqa-v2.1", "doqa_dataset", "doqa-cooking-test-v2.1.json")
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(path, "doqa-v2.1", "doqa_dataset", "doqa-cooking-dev-v2.1.json")
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(path, "doqa-v2.1", "doqa_dataset", "doqa-cooking-train-v2.1.json")
},
),
]
elif self.config.name == "movies":
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(path, "doqa-v2.1", "doqa_dataset", "doqa-movies-test-v2.1.json")
},
)
]
elif self.config.name == "travel":
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(path, "doqa-v2.1", "doqa_dataset", "doqa-travel-test-v2.1.json")
},
)
]
else:
raise ValueError("Unknown config name")
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for row in data["data"]:
title = row["title"]
background = row["background"]
paragraphs = row["paragraphs"]
for p in paragraphs:
context = p["context"]
qas = p["qas"]
for qa in qas:
question = qa["question"]
answers = qa["answers"]
id1 = qa["id"]
yesno = qa["yesno"]
followup = qa["followup"]
answer_text = [answer["text"] for answer in answers]
answer_start = [answer["answer_start"] for answer in answers]
orig_answer_start = [qa["orig_answer"]["answer_start"]]
orig_answer_text = [qa["orig_answer"]["text"]]
yield id1, {
"title": title,
"background": background,
"context": context,
"question": question,
"id": id1,
"answers": {
"text": answer_text,
"answer_start": answer_start,
},
"followup": followup,
"yesno": yesno,
"orig_answer": {
"text": orig_answer_text,
"answer_start": orig_answer_start,
},
}
|