File size: 5,952 Bytes
92282e8
 
 
 
 
f437036
92282e8
f437036
8c18e11
92282e8
 
 
b9c0bd4
92282e8
 
 
332b910
e482294
8349a83
e482294
 
830e6e9
 
 
 
 
 
 
 
 
 
43d001a
 
830e6e9
 
 
 
 
c7a62e4
 
 
830e6e9
 
92282e8
 
 
 
 
 
 
4c35261
92282e8
 
 
4c35261
 
92282e8
 
 
 
 
 
4c35261
 
92282e8
 
 
 
 
702ce67
92282e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226208e
 
 
92282e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226208e
 
 
 
 
92282e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
702ce67
 
 
e482294
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
annotations_creators:
- found
language_creators:
- found
language:
- tr
license:
- cc-by-2.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
pretty_name: OffensEval-TR 2020
tags:
- offensive-language-classification
dataset_info:
  features:
  - name: id
    dtype: int32
  - name: tweet
    dtype: string
  - name: subtask_a
    dtype:
      class_label:
        names:
          '0': NOT
          '1': 'OFF'
  config_name: offenseval2020-turkish
  splits:
  - name: train
    num_bytes: 4260505
    num_examples: 31756
  - name: test
    num_bytes: 481300
    num_examples: 3528
  download_size: 2048258
  dataset_size: 4741805
---

# Dataset Card for OffensEval-TR 2020

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [offensive-turkish](https://coltekin.github.io/offensive-turkish/)
- **Paper:** [A Corpus of Turkish Offensive Language on Social Media](https://coltekin.github.io/offensive-turkish/troff.pdf)
- **Point of Contact:** [Çağrı Çöltekin](ccoltekin@sfs.uni-tuebingen.de)

### Dataset Summary

The file offenseval-tr-training-v1.tsv contains 31,756 annotated tweets. 

The file offenseval-annotation.txt contains a short summary of the annotation guidelines.

Twitter user mentions were substituted by @USER and URLs have been substitute by URL.

Each instance contains up to 1 labels corresponding to one of the following sub-task:

- Sub-task A: Offensive language identification; 

### Supported Tasks and Leaderboards

The dataset was published on this [paper](https://coltekin.github.io/offensive-turkish/troff.pdf). 

### Languages

The dataset is based on Turkish.

## Dataset Structure

### Data Instances

A binary dataset with with (NOT) Not Offensive and (OFF) Offensive tweets.  

### Data Fields

Instances are included in TSV format as follows:

ID	INSTANCE	SUBA

The column names in the file are the following:

id	tweet	subtask_a

The labels used in the annotation are listed below.

#### Task and Labels

(A) Sub-task A: Offensive language identification

- (NOT) Not Offensive - This post does not contain offense or profanity.
- (OFF) Offensive - This post contains offensive language or a targeted (veiled or direct) offense

In our annotation, we label a post as offensive (OFF) if it contains any form of non-acceptable language (profanity) or a targeted offense, which can be veiled or direct. 

### Data Splits

| train | test |
|------:|-----:|
| 31756 | 3528 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

From tweeter.  

### Annotations

[More Information Needed]

#### Annotation process

We describe the labels above in a “flat” manner. However, the annotation process we follow is hierarchical. The following QA pairs give a more flowchart-like procedure to follow

1. Is the tweet in Turkish and understandable?
    * No: mark tweet X for exclusion, and go to next tweet
    * Yes: continue to step 2
2. Is the tweet include offensive/inappropriate language?
    * No: mark the tweet non go to step 4
    * Yes: continue to step 3
3. Is the offense in the tweet targeted?
    * No: mark the tweet prof go to step 4
    * Yes: chose one (or more) of grp, ind, *oth based on the definitions above. Please try to limit the number of labels unless it is clear that the tweet includes offense against multiple categories.
4. Was the labeling decision difficult (precise answer needs more context, tweets includes irony, or for another reason)?
    * No: go to next tweet
    * Yes: add the label X, go to next tweet


#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The annotations are distributed under the terms of [Creative Commons Attribution License (CC-BY)](https://creativecommons.org/licenses/by/2.0/). Please cite the following paper, if you use this resource.

### Citation Information

```
@inproceedings{coltekin2020lrec,
 author  = {\c{C}\"{o}ltekin, \c{C}a\u{g}r{\i}},
 year  = {2020},
 title  = {A Corpus of Turkish Offensive Language on Social Media},
 booktitle  = {Proceedings of The 12th Language Resources and Evaluation Conference},
 pages  = {6174--6184},
 address  = {Marseille, France},
 url  = {https://www.aclweb.org/anthology/2020.lrec-1.758},
}
```

### Contributions

Thanks to [@yavuzKomecoglu](https://github.com/yavuzKomecoglu) for adding this dataset.