File size: 17,794 Bytes
3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 fe9cdc7 3d64a03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"source": [
"# NOTE : although they have 1x768 dimension , these are not text_encodings , but token vectors\n",
"import json\n",
"import pandas as pd\n",
"import os\n",
"import shelve\n",
"import torch\n",
"from safetensors.torch import save_file , load_file\n",
"import json\n",
"\n",
"home_directory = '/content/'\n",
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
"%cd {home_directory}\n",
"#-------#\n",
"\n",
"# Load the data if not already loaded\n",
"try:\n",
" loaded\n",
"except:\n",
" %cd {home_directory}\n",
" !git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n",
" loaded = True\n",
"#--------#\n",
"\n",
"def getPrompts(_path, separator):\n",
" path = _path + '/text'\n",
" path_vec = _path + '/token_vectors'\n",
" _file_name = 'vocab'\n",
" #-----#\n",
" index = 0\n",
" prompts = {}\n",
" text_encodings = {}\n",
" #-----#\n",
" for filename in os.listdir(f'{path}'):\n",
" print(f'reading {filename}....')\n",
" _index = 0\n",
" %cd {path}\n",
" with open(f'{filename}', 'r') as f:\n",
" data = json.load(f)\n",
" #------#\n",
" _df = pd.DataFrame({'count': data})['count']\n",
" prompts = {\n",
" key : value for key, value in _df.items()\n",
" }\n",
"\n",
" for key in prompts:\n",
" index = index + 1\n",
" #------#\n",
" NUM_ITEMS = index -1\n",
" #------#\n",
" %cd {path_vec}\n",
" text_encodings = load_file(f'{_file_name}.safetensors')\n",
" continue\n",
" #----------#\n",
" return prompts , text_encodings , NUM_ITEMS\n",
"#--------#\n",
"\n",
"def append_from_url(dictA, tensA , nA , url , separator):\n",
" dictB , tensB, nB = getPrompts(url, separator)\n",
" dictAB = dictA\n",
" tensAB = tensA\n",
" nAB = nA\n",
" for key in dictB:\n",
" nAB = nAB + 1\n",
" dictAB[f'{nA + int(key)}'] = dictB[key]\n",
" tensAB[f'{nA + int(key)}'] = tensB[key]\n",
" #-----#\n",
" return dictAB, tensAB , nAB-1\n",
"#-------#"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "V-1DrszLqEVj",
"outputId": "8788d8fc-59ce-4cba-9867-4860291afcb2"
},
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"/content\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# @title Fetch the json + .safetensor pair\n",
"\n",
"#------#\n",
"vocab = {}\n",
"tokens = {}\n",
"nA = 0\n",
"#--------#\n",
"\n",
"if True:\n",
" url = '/content/text-to-image-prompts/vocab'\n",
" vocab , tokens, nA = append_from_url(vocab , tokens, nA , url , '')\n",
"#-------#\n",
"NUM_TOKENS = nA\n",
"#--------#\n",
"\n",
"if False:\n",
" print(NUM_TOKENS) # NUM_TOKENS = 49407\n",
" print(vocab['8922']) #ID for banana is 8922"
],
"metadata": {
"id": "EDCd1IGEqj3-"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title Compare similiarity between tokens\n",
"\n",
"import torch\n",
"from transformers import AutoTokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
"\n",
"# @markdown Write name of token to match against\n",
"token_name = \"banana\" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n",
"\n",
"prompt = token_name\n",
"# @markdown (optional) Mix the token with something else\n",
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n",
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"# @markdown Limit char size of included token\n",
"\n",
"min_char_size = 0 # param {type:\"slider\", min:0, max: 50, step:1}\n",
"char_range = 50 # param {type:\"slider\", min:0, max: 50, step:1}\n",
"\n",
"tokenizer_output = tokenizer(text = prompt)\n",
"input_ids = tokenizer_output['input_ids']\n",
"id_A = input_ids[1]\n",
"A = torch.tensor(tokens[f'{id_A}'])\n",
"A = A/A.norm(p=2, dim=-1, keepdim=True)\n",
"#-----#\n",
"tokenizer_output = tokenizer(text = mix_with)\n",
"input_ids = tokenizer_output['input_ids']\n",
"id_C = input_ids[1]\n",
"C = torch.tensor(tokens[f'{id_C}'])\n",
"C = C/C.norm(p=2, dim=-1, keepdim=True)\n",
"#-----#\n",
"sim_AC = torch.dot(A,C)\n",
"#-----#\n",
"print(input_ids)\n",
"#-----#\n",
"\n",
"#if no imput exists we just randomize the entire thing\n",
"if (prompt == \"\"):\n",
" id_A = -1\n",
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
" R = torch.rand(A.shape)\n",
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
" A = R\n",
" name_A = 'random_A'\n",
"\n",
"#if no imput exists we just randomize the entire thing\n",
"if (mix_with == \"\"):\n",
" id_C = -1\n",
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
" R = torch.rand(A.shape)\n",
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
" C = R\n",
" name_C = 'random_C'\n",
"\n",
"name_A = \"A of random type\"\n",
"if (id_A>-1):\n",
" name_A = vocab[f'{id_A}']\n",
"\n",
"name_C = \"token C of random type\"\n",
"if (id_C>-1):\n",
" name_C = vocab[f'{id_C}']\n",
"\n",
"print(f\"The similarity between A '{name_A}' and C '{name_C}' is {round(sim_AC.item()*100,2)} %\")\n",
"\n",
"if (mix_method == \"None\"):\n",
" print(\"No operation\")\n",
"\n",
"if (mix_method == \"Average\"):\n",
" A = w*A + (1-w)*C\n",
" _A = A.norm(p=2, dim=-1, keepdim=True)\n",
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = w*A + (1-w)*C , where C is '{name_C}' token , for w = {w} \")\n",
"\n",
"if (mix_method == \"Subtract\"):\n",
" tmp = w*A - (1-w)*C\n",
" tmp = tmp/tmp.norm(p=2, dim=-1, keepdim=True)\n",
" A = tmp\n",
" #//---//\n",
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
"\n",
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
"\n",
"dots = torch.zeros(NUM_TOKENS)\n",
"for index in range(NUM_TOKENS):\n",
" id_B = index\n",
" B = torch.tensor(tokens[f'{id_B}'])\n",
" B = B/B.norm(p=2, dim=-1, keepdim=True)\n",
" sim_AB = torch.dot(A,B)\n",
" dots[index] = sim_AB\n",
"\n",
"\n",
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
"#----#\n",
"if (mix_method == \"Average\"):\n",
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
"if (mix_method == \"Subtract\"):\n",
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
"if (mix_method == \"None\"):\n",
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
"\n",
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n",
"\n",
"# @markdown Set print options\n",
"list_size = 100 # @param {type:'number'}\n",
"print_ID = False # @param {type:\"boolean\"}\n",
"print_Similarity = True # @param {type:\"boolean\"}\n",
"print_Name = True # @param {type:\"boolean\"}\n",
"print_Divider = True # @param {type:\"boolean\"}\n",
"\n",
"\n",
"if (print_Divider):\n",
" print('//---//')\n",
"\n",
"print('')\n",
"print('Here is the result : ')\n",
"print('')\n",
"\n",
"for index in range(list_size):\n",
" id = indices[index].item()\n",
" if (print_Name):\n",
" print(vocab[f'{id}']) # vocab item\n",
" if (print_ID):\n",
" print(f'ID = {id}') # IDs\n",
" if (print_Similarity):\n",
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
" if (print_Divider):\n",
" print('--------')\n",
"\n",
"#Print the sorted list from above result\n",
"\n",
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
"\n",
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID.\n",
"\n",
"# Save results as .db file\n",
"import shelve\n",
"VOCAB_FILENAME = 'tokens_most_similiar_to_' + name_A.replace('</w>','').strip()\n",
"d = shelve.open(VOCAB_FILENAME)\n",
"#NUM TOKENS == 49407\n",
"for index in range(NUM_TOKENS):\n",
" #print(d[f'{index}']) #<-----Use this to read values from the .db file\n",
" d[f'{index}']= vocab[f'{indices[index].item()}'] #<---- write values to .db file\n",
"#----#\n",
"d.close() #close the file\n",
"# See this link for additional stuff to do with shelve: https://docs.python.org/3/library/shelve.html"
],
"metadata": {
"id": "ZwGqg9R5s1QS"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Below is code used to create the .safetensor + json files for the notebook"
],
"metadata": {
"id": "dGb1KgP_p4_w"
}
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "AyhYBlP2pYyI",
"outputId": "9e2fc730-23ee-4b05-9957-6fb2db82f2cf"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"/content\n",
"/content\n",
"/content/text-to-image-prompts/vocab/raw\n",
"/content/text-to-image-prompts/vocab/raw\n",
"/content/output/vocab/token_vectors\n",
"/content/output/vocab/text\n"
]
}
],
"source": [
"# @title Process the raw vocab into json + .safetensor pair\n",
"\n",
"# NOTE : although they have 1x768 dimension , these are not text_encodings , but token vectors\n",
"import json\n",
"import pandas as pd\n",
"import os\n",
"import shelve\n",
"import torch\n",
"from safetensors.torch import save_file , load_file\n",
"import json\n",
"\n",
"home_directory = '/content/'\n",
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
"%cd {home_directory}\n",
"#-------#\n",
"\n",
"# Load the data if not already loaded\n",
"try:\n",
" loaded\n",
"except:\n",
" %cd {home_directory}\n",
" !git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n",
" loaded = True\n",
"#--------#\n",
"\n",
"# User input\n",
"target = home_directory + 'text-to-image-prompts/vocab/'\n",
"root_output_folder = home_directory + 'output/'\n",
"output_folder = root_output_folder + 'vocab/'\n",
"root_filename = 'vocab'\n",
"NUM_FILES = 1\n",
"#--------#\n",
"\n",
"# Setup environment\n",
"def my_mkdirs(folder):\n",
" if os.path.exists(folder)==False:\n",
" os.makedirs(folder)\n",
"#--------#\n",
"output_folder_text = output_folder + 'text/'\n",
"output_folder_text = output_folder + 'text/'\n",
"output_folder_token_vectors = output_folder + 'token_vectors/'\n",
"target_raw = target + 'raw/'\n",
"%cd {home_directory}\n",
"my_mkdirs(output_folder)\n",
"my_mkdirs(output_folder_text)\n",
"my_mkdirs(output_folder_token_vectors)\n",
"#-------#\n",
"\n",
"%cd {target_raw}\n",
"model = torch.load(f'{root_filename}.pt' , weights_only=True)\n",
"tokens = model.clone().detach()\n",
"\n",
"\n",
"%cd {target_raw}\n",
"with open(f'{root_filename}.json', 'r') as f:\n",
" data = json.load(f)\n",
"_df = pd.DataFrame({'count': data})['count']\n",
"#reverse key and value in the dict\n",
"vocab = {\n",
" value : key for key, value in _df.items()\n",
"}\n",
"#------#\n",
"\n",
"\n",
"tensors = {}\n",
"names = {}\n",
"for key in vocab:\n",
" token = tokens[int(key)]\n",
" tensors[f'{key}'] = token\n",
" names[f'{key}'] = vocab[key]\n",
"#-----#\n",
"\n",
"%cd {output_folder_token_vectors}\n",
"save_file(tensors, \"vocab.safetensors\")\n",
"\n",
"%cd {output_folder_text}\n",
"with open('vocab.json', 'w') as f:\n",
" json.dump(names, f)\n"
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "W_Ig4ZGH18hX",
"outputId": "5f2c0a6e-9b6e-4135-d7de-900673f34e1c",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
}
},
"execution_count": 4,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'banana</w>'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 4
}
]
},
{
"cell_type": "code",
"source": [
"# Determine if this notebook is running on Colab or Kaggle\n",
"#Use https://www.kaggle.com/ if Google Colab GPU is busy\n",
"home_directory = '/content/'\n",
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
"%cd {home_directory}\n",
"#-------#\n",
"\n",
"# @title Download the vocab as .zip\n",
"import os\n",
"%cd {home_directory}\n",
"#os.remove(f'{home_directory}results.zip')\n",
"root_output_folder = home_directory + 'output/'\n",
"zip_dest = f'{home_directory}results.zip'\n",
"!zip -r {zip_dest} {root_output_folder}"
],
"metadata": {
"id": "9uIDf9IUpzh2",
"outputId": "949f95c8-7657-42dd-d70a-d3cc7da2c72f",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"/content\n",
"/content\n",
" adding: content/output/ (stored 0%)\n",
" adding: content/output/vocab/ (stored 0%)\n",
" adding: content/output/vocab/text/ (stored 0%)\n",
" adding: content/output/vocab/text/vocab.json (deflated 71%)\n",
" adding: content/output/vocab/text/.ipynb_checkpoints/ (stored 0%)\n",
" adding: content/output/vocab/token_vectors/ (stored 0%)\n",
" adding: content/output/vocab/token_vectors/vocab.safetensors (deflated 9%)\n",
" adding: content/output/vocab/token_vectors/.ipynb_checkpoints/ (stored 0%)\n"
]
}
]
}
]
} |