File size: 30,089 Bytes
dee113c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import pickle
import random
import re
import shutil
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
import json
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
import multiprocessing
from model import Model
cpu_cont = multiprocessing.cpu_count()
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
BertConfig, BertForMaskedLM, BertTokenizer,
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
RobertaConfig, RobertaModel, RobertaTokenizer,
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer),
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
}
class InputFeatures(object):
"""A single training/test features for a example."""
def __init__(self,
code_tokens,
code_ids,
nl_tokens,
nl_ids,
url,
idx,
):
self.code_tokens = code_tokens
self.code_ids = code_ids
self.nl_tokens = nl_tokens
self.nl_ids = nl_ids
self.url = url
self.idx = idx
def convert_examples_to_features(js, tokenizer, args):
# code
if 'code_tokens' in js:
code = ' '.join(js['code_tokens'])
else:
code = ' '.join(js['function_tokens'])
code_tokens = tokenizer.tokenize(code)[:args.block_size - 2]
code_tokens = [tokenizer.cls_token] + code_tokens + [tokenizer.sep_token]
code_ids = tokenizer.convert_tokens_to_ids(code_tokens)
padding_length = args.block_size - len(code_ids)
code_ids += [tokenizer.pad_token_id] * padding_length
nl = ' '.join(js['docstring_tokens'])
nl_tokens = tokenizer.tokenize(nl)[:args.block_size - 2]
nl_tokens = [tokenizer.cls_token] + nl_tokens + [tokenizer.sep_token]
nl_ids = tokenizer.convert_tokens_to_ids(nl_tokens)
padding_length = args.block_size - len(nl_ids)
nl_ids += [tokenizer.pad_token_id] * padding_length
return InputFeatures(code_tokens, code_ids, nl_tokens, nl_ids, js['url'], js['idx'])
class TextDataset(Dataset):
def __init__(self, tokenizer, args, file_path=None):
self.examples = []
data = []
with open(file_path) as f:
for i, line in enumerate(f):
# if i>200:
# break
line = line.strip()
js = json.loads(line)
data.append(js)
for js in data:
self.examples.append(convert_examples_to_features(js, tokenizer, args))
if 'train' in file_path:
for idx, example in enumerate(self.examples[:1]):
logger.info("*** Example ***")
logger.info("idx: {}".format(idx))
logger.info("code_tokens: {}".format([x.replace('\u0120', '_') for x in example.code_tokens]))
logger.info("code_ids: {}".format(' '.join(map(str, example.code_ids))))
logger.info("nl_tokens: {}".format([x.replace('\u0120', '_') for x in example.nl_tokens]))
logger.info("nl_ids: {}".format(' '.join(map(str, example.nl_ids))))
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
return (torch.tensor(self.examples[i].code_ids), torch.tensor(self.examples[i].nl_ids))
def set_seed(seed=42):
random.seed(seed)
os.environ['PYHTONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def train(args, train_dataset, model, tokenizer):
""" Train the model """
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler,
batch_size=args.train_batch_size, num_workers=4, pin_memory=True)
args.max_steps = args.epoch * len(train_dataloader)
args.save_steps = len(train_dataloader) // 10
args.warmup_steps = len(train_dataloader)
args.logging_steps = len(train_dataloader)
args.num_train_epochs = args.epoch
model.to(args.device)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.max_steps * 0.1,
num_training_steps=args.max_steps)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')
optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')
if os.path.exists(scheduler_last):
scheduler.load_state_dict(torch.load(scheduler_last))
if os.path.exists(optimizer_last):
optimizer.load_state_dict(torch.load(optimizer_last))
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", args.max_steps)
global_step = args.start_step
tr_loss, logging_loss, avg_loss, tr_nb, tr_num, train_loss = 0.0, 0.0, 0.0, 0, 0, 0
best_mrr = 0.0
best_acc = 0.0
# model.resize_token_embeddings(len(tokenizer))
model.zero_grad()
for idx in range(args.start_epoch, int(args.num_train_epochs)):
bar = train_dataloader
tr_num = 0
train_loss = 0
for step, batch in enumerate(tqdm(bar)):
code_inputs = batch[0].to(args.device)
nl_inputs = batch[1].to(args.device)
model.train()
loss, code_vec, nl_vec = model(code_inputs, nl_inputs)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
tr_num += 1
train_loss += loss.item()
if avg_loss == 0:
avg_loss = tr_loss
avg_loss = round(train_loss / tr_num, 5)
if (step + 1) % 100 == 0:
logger.info("epoch {} step {} loss {}".format(idx, step + 1, avg_loss))
# bar.set_description("epoch {} loss {}".format(idx,avg_loss))
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
output_flag = True
avg_loss = round(np.exp((tr_loss - logging_loss) / (global_step - tr_nb)), 4)
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logging_loss = tr_loss
tr_nb = global_step
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer, eval_when_training=True)
for key, value in results.items():
logger.info(" %s = %s", key, round(value, 4))
# Save model checkpoint
tr_num = 0
train_loss = 0
if results['eval_mrr'] > best_acc:
best_acc = results['eval_mrr']
logger.info(" " + "*" * 20)
logger.info(" Best mrr:%s", round(best_acc, 4))
logger.info(" " + "*" * 20)
checkpoint_prefix = 'checkpoint-best-mrr'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
output_dir = os.path.join(output_dir, '{}'.format('model.bin'))
torch.save(model_to_save.state_dict(), output_dir)
logger.info("Saving model checkpoint to %s", output_dir)
# 每一轮记录checkpoint
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(idx+1))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth')
logger.info("Saving model checkpoint to %s", ckpt_output_path)
torch.save(model_to_save.state_dict(), ckpt_output_path)
# 每一轮记录表征
# logger.info("Saving training feature")
# train_dataloader_bs1 = DataLoader(train_dataset, sampler=train_sampler, batch_size=1,num_workers=4,pin_memory=True)
# code_feature, nl_feature = [], []
# for batch in tqdm(train_dataloader_bs1):
# code_inputs = batch[0].to(args.device)
# nl_inputs = batch[1].to(args.device)
# model.eval()
# with torch.no_grad():
# cf, nf = model.feature(code_inputs=code_inputs, nl_inputs=nl_inputs)
# code_feature.append(cf.cpu().detach().numpy())
# nl_feature.append(nf.cpu().detach().numpy())
# code_feature_output_path = os.path.join(output_dir, 'code_feature.pkl')
# nl_feature_output_path = os.path.join(output_dir, 'nl_feature.pkl')
# with open(code_feature_output_path, 'wb') as f1, open(nl_feature_output_path, 'wb') as f2:
# pickle.dump(code_feature, f1)
# pickle.dump(code_feature, f2)
eval_dataset = None
def evaluate(args, model, tokenizer, eval_when_training=False):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
global eval_dataset
if eval_dataset is None:
eval_dataset = TextDataset(tokenizer, args, args.eval_data_file)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, num_workers=4,
pin_memory=True)
# multi-gpu evaluate
if args.n_gpu > 1 and eval_when_training is False:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
code_vecs = []
nl_vecs = []
for batch in eval_dataloader:
code_inputs = batch[0].to(args.device)
nl_inputs = batch[1].to(args.device)
with torch.no_grad():
lm_loss, code_vec, nl_vec = model(code_inputs, nl_inputs)
eval_loss += lm_loss.mean().item()
code_vecs.append(code_vec.cpu().numpy())
nl_vecs.append(nl_vec.cpu().numpy())
nb_eval_steps += 1
code_vecs = np.concatenate(code_vecs, 0)
nl_vecs = np.concatenate(nl_vecs, 0)
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.tensor(eval_loss)
scores = np.matmul(nl_vecs, code_vecs.T)
ranks = []
for i in range(len(scores)):
score = scores[i, i]
rank = 1
for j in range(len(scores)):
if i != j and scores[i, j] >= score:
rank += 1
ranks.append(1 / rank)
result = {
"eval_loss": float(perplexity),
"eval_mrr": float(np.mean(ranks))
}
return result
def test(args, model, tokenizer):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_dataset = TextDataset(tokenizer, args, args.test_data_file)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running Test *****")
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
code_vecs = []
nl_vecs = []
for batch in eval_dataloader:
code_inputs = batch[0].to(args.device)
nl_inputs = batch[1].to(args.device)
with torch.no_grad():
lm_loss, code_vec, nl_vec = model(code_inputs, nl_inputs)
eval_loss += lm_loss.mean().item()
code_vecs.append(code_vec.cpu().numpy())
nl_vecs.append(nl_vec.cpu().numpy())
nb_eval_steps += 1
code_vecs = np.concatenate(code_vecs, 0)
nl_vecs = np.concatenate(nl_vecs, 0)
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.tensor(eval_loss)
scores = np.matmul(nl_vecs, code_vecs.T)
sort_ids = np.argsort(scores, axis=-1, kind='quicksort', order=None)[:, ::-1]
indexs = []
urls = []
for example in eval_dataset.examples:
indexs.append(example.idx)
urls.append(example.url)
with open(os.path.join(args.output_dir, "predictions.jsonl"), 'w') as f:
for index, url, sort_id in zip(indexs, urls, sort_ids):
js = {}
js['url'] = url
js['answers'] = []
for idx in sort_id[:100]:
js['answers'].append(indexs[int(idx)])
f.write(json.dumps(js) + '\n')
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--train_data_file", default=None, type=str,
help="The input training data file (a text file).")
parser.add_argument("--eval_data_file", default=None, type=str,
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
parser.add_argument("--test_data_file", default=None, type=str,
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
parser.add_argument("--model_type", default="bert", type=str,
help="The model architecture to be fine-tuned.")
parser.add_argument("--model_name_or_path", default=None, type=str,
help="The model checkpoint for weights initialization.")
parser.add_argument("--mlm", action='store_true',
help="Train with masked-language modeling loss instead of language modeling.")
parser.add_argument("--mlm_probability", type=float, default=0.15,
help="Ratio of tokens to mask for masked language modeling loss")
parser.add_argument("--config_name", default="", type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
parser.add_argument("--cache_dir", default="", type=str,
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
parser.add_argument("--block_size", default=-1, type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_test", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Run evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--eval_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=1.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument('--save_total_limit', type=int, default=None,
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--epoch', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
args.per_gpu_train_batch_size = args.train_batch_size # 修改//args.n_gpu
args.per_gpu_eval_batch_size = args.eval_batch_size # 修改//args.n_gpu
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args.seed)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab
args.start_epoch = 0
args.start_step = 0
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):
args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')
args.config_name = os.path.join(checkpoint_last, 'config.json')
idx_file = os.path.join(checkpoint_last, 'idx_file.txt')
with open(idx_file, encoding='utf-8') as idxf:
args.start_epoch = int(idxf.readlines()[0].strip()) + 1
step_file = os.path.join(checkpoint_last, 'step_file.txt')
if os.path.exists(step_file):
with open(step_file, encoding='utf-8') as stepf:
args.start_step = int(stepf.readlines()[0].strip())
logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None)
config.num_labels = 1
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None)
if args.block_size <= 0:
args.block_size = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model
args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
if args.model_name_or_path:
model = model_class.from_pretrained(args.model_name_or_path,
config=config,
cache_dir=args.cache_dir if args.cache_dir else None)
else:
model = model_class(config)
model = Model(model, config, tokenizer, args)
if args.local_rank == 0:
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
train_dataset = TextDataset(tokenizer, args, args.train_data_file)
if args.local_rank == 0:
torch.distributed.barrier()
train(args, train_dataset, model, tokenizer)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoint_prefix = 'epoch_2/subject_model.pth'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
model.load_state_dict(torch.load(output_dir))
model.to(args.device)
result = evaluate(args, model, tokenizer)
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(round(result[key], 4)))
if args.do_test and args.local_rank in [-1, 0]:
checkpoint_prefix = 'epoch_2/subject_model.pth'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
model.load_state_dict(torch.load(output_dir))
model.to(args.device)
test(args, model, tokenizer)
return results
if __name__ == "__main__":
main()
|