File size: 7,479 Bytes
6e486de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
#读取数据集,在../dataset/raw_data下按照数据集的完整排序,1.png,2.png,3.png,...保存
import os
import yaml
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from tqdm import tqdm
import sys
def unpickle(file):
"""读取CIFAR-10数据文件"""
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
def add_noise_for_preview(image, noise_type, level):
"""向图像添加不同类型的噪声的预览
Args:
image: 输入图像 (Tensor: C x H x W),范围[0,1]
noise_type: 噪声类型 (int, 1-3)
level: 噪声强度 (float)
Returns:
noisy_image: 添加噪声后的图像 (Tensor: C x H x W)
"""
# 将图像从Tensor转为Numpy数组
img_np = image.cpu().numpy()
img_np = np.transpose(img_np, (1, 2, 0)) # C x H x W -> H x W x C
# 根据噪声类型添加噪声
if noise_type == 1: # 高斯噪声
noise = np.random.normal(0, level, img_np.shape)
noisy_img = img_np + noise
noisy_img = np.clip(noisy_img, 0, 1)
elif noise_type == 2: # 椒盐噪声
# 创建掩码,确定哪些像素将变为椒盐噪声
noisy_img = img_np.copy() # 创建副本而不是直接修改原图
mask = np.random.random(img_np.shape[:2])
# 椒噪声 (黑点)
noisy_img[mask < level/2] = 0
# 盐噪声 (白点)
noisy_img[mask > 1 - level/2] = 1
elif noise_type == 3: # 泊松噪声
# 确保输入值为正数
lam = np.maximum(img_np * 10.0, 0.0001) # 避免负值和零值
noisy_img = np.random.poisson(lam) / 10.0
noisy_img = np.clip(noisy_img, 0, 1)
else: # 默认返回原图像
noisy_img = img_np
# 将噪声图像从Numpy数组转回Tensor
noisy_img = np.transpose(noisy_img, (2, 0, 1)) # H x W x C -> C x H x W
noisy_tensor = torch.from_numpy(noisy_img.astype(np.float32))
return noisy_tensor
def save_images_from_cifar10_with_noisy(dataset_path, save_dir):
"""从CIFAR-10数据集中保存图像,对指定索引添加噪声
Args:
dataset_path: CIFAR-10数据集路径
save_dir: 图像保存路径
"""
# 创建保存目录
os.makedirs(save_dir, exist_ok=True)
# 读取噪声样本的索引
noise_index_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'dataset', 'noise_index.npy')
if os.path.exists(noise_index_path):
noise_indices = np.load(noise_index_path)
print(f"已加载 {len(noise_indices)} 个噪声样本索引")
else:
noise_indices = []
print("未找到噪声索引文件,将不添加噪声")
# 加载配置
config_path = './train.yaml'
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
# 读取噪声参数
noise_levels = config.get('noise_levels', {})
gaussian_level = noise_levels.get('gaussian', [0.3])
salt_pepper_level = noise_levels.get('salt_pepper', [0.1])
poisson_level = noise_levels.get('poisson', [1.0])[0]
# 获取训练集数据
train_data = []
train_labels = []
# 读取训练数据
for i in range(1, 6):
batch_file = os.path.join(dataset_path, f'data_batch_{i}')
if os.path.exists(batch_file):
print(f"读取训练批次 {i}")
batch = unpickle(batch_file)
train_data.append(batch[b'data'])
train_labels.extend(batch[b'labels'])
# 合并所有训练数据
if train_data:
train_data = np.vstack(train_data)
train_data = train_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
# 读取测试数据
test_file = os.path.join(dataset_path, 'test_batch')
if os.path.exists(test_file):
print("读取测试数据")
test_batch = unpickle(test_file)
test_data = test_batch[b'data']
test_labels = test_batch[b'labels']
test_data = test_data.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
else:
test_data = []
test_labels = []
# 合并训练和测试数据
all_data = np.concatenate([train_data, test_data]) if len(test_data) > 0 and len(train_data) > 0 else (train_data if len(train_data) > 0 else test_data)
all_labels = train_labels + test_labels if len(test_labels) > 0 and len(train_labels) > 0 else (train_labels if len(train_labels) > 0 else test_labels)
# 设置设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 保存图像
print(f"保存 {len(all_data)} 张图像...")
for i, (img, label) in enumerate(tqdm(zip(all_data, all_labels), total=len(all_data))):
# 检查索引是否在噪声样本索引中
if i in noise_indices:
# 为该样本确定噪声类型和强度
noise_type = None
level = None
if label == 2: # 高斯噪声强
noise_type = 1
level = gaussian_level[1]
elif label == 3: # 高斯噪声弱
noise_type = 1
level = gaussian_level[0]
elif label == 4: # 椒盐噪声强
noise_type = 2
level = salt_pepper_level[1]
elif label == 5: # 椒盐噪声弱
noise_type = 2
level = salt_pepper_level[0]
elif label == 6: # 泊松噪声
noise_type = 3
level = poisson_level
elif label == 7: # 泊松噪声
noise_type = 3
level = poisson_level
# 如果是需要添加噪声的标签,则添加噪声
if noise_type is not None and level is not None:
# 转换为tensor
img_tensor = torch.from_numpy(img.astype(np.float32) / 255.0).permute(2, 0, 1).to(device)
# 添加噪声
noisy_tensor = add_noise_for_preview(img_tensor, noise_type, level)
# 转回numpy并保存
noisy_img = (noisy_tensor.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
noisy_pil = Image.fromarray(noisy_img)
noisy_pil.save(os.path.join(save_dir, f"{i}.png"))
else:
# 普通保存
img_pil = Image.fromarray(img)
img_pil.save(os.path.join(save_dir, f"{i}.png"))
else:
# 保存原始图像
img_pil = Image.fromarray(img)
img_pil.save(os.path.join(save_dir, f"{i}.png"))
print(f"完成! {len(all_data)} 张图像已保存到 {save_dir}, 其中 {len(noise_indices)} 张添加了噪声")
if __name__ == "__main__":
# 设置路径
dataset_path = "../dataset/cifar-10-batches-py"
save_dir = "../dataset/raw_data"
# 检查数据集是否存在,如果不存在则下载
if not os.path.exists(dataset_path):
print("数据集不存在,正在下载...")
os.makedirs("../dataset", exist_ok=True)
transform = transforms.Compose([transforms.ToTensor()])
trainset = torchvision.datasets.CIFAR10(root="../dataset", train=True, download=True, transform=transform)
# 保存图像
save_images_from_cifar10_with_noisy(dataset_path, save_dir) |