File size: 14,303 Bytes
a619d03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import sys
import os
import yaml
from pathlib import Path
import torch
import torch.nn as nn
import torch.optim as optim
import time
import logging
import numpy as np
from tqdm import tqdm
from dataset_utils import get_cifar10_dataloaders
from model import MobileNetV3
from get_representation import time_travel_saver
def setup_logger(log_file):
"""配置日志记录器,如果日志文件存在则覆盖
Args:
log_file: 日志文件路径
Returns:
logger: 配置好的日志记录器
"""
# 创建logger
logger = logging.getLogger('train')
logger.setLevel(logging.INFO)
# 移除现有的处理器
if logger.hasHandlers():
logger.handlers.clear()
# 创建文件处理器,使用'w'模式覆盖现有文件
fh = logging.FileHandler(log_file, mode='w')
fh.setLevel(logging.INFO)
# 创建控制台处理器
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
# 创建格式器
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# 添加处理器
logger.addHandler(fh)
logger.addHandler(ch)
return logger
def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda:0',
save_dir='./epochs', model_name='model', interval=1):
"""通用的模型训练函数
Args:
model: 要训练的模型
trainloader: 训练数据加载器
testloader: 测试数据加载器
epochs: 训练轮数
lr: 学习率
device: 训练设备,格式为'cuda:N',其中N为GPU编号(0,1,2,3)
save_dir: 模型保存目录
model_name: 模型名称
interval: 模型保存间隔
"""
# 检查并设置GPU设备
if not torch.cuda.is_available():
print("CUDA不可用,将使用CPU训练")
device = 'cpu'
elif not device.startswith('cuda:'):
device = f'cuda:0'
# 确保device格式正确
if device.startswith('cuda:'):
gpu_id = int(device.split(':')[1])
if gpu_id >= torch.cuda.device_count():
print(f"GPU {gpu_id} 不可用,将使用GPU 0")
device = 'cuda:0'
# 设置保存目录
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# 设置日志文件路径
log_file = os.path.join(os.path.dirname(save_dir),'epochs', 'train.log')
if not os.path.exists(os.path.dirname(log_file)):
os.makedirs(os.path.dirname(log_file))
logger = setup_logger(log_file)
# 损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
# 移动模型到指定设备
model = model.to(device)
best_acc = 0
start_time = time.time()
logger.info(f'开始训练 {model_name}')
logger.info(f'总轮数: {epochs}, 学习率: {lr}, 设备: {device}')
for epoch in range(epochs):
# 训练阶段
model.train()
train_loss = 0
correct = 0
total = 0
train_pbar = tqdm(trainloader, desc=f'Epoch {epoch+1}/{epochs} [Train]')
for batch_idx, (inputs, targets) in enumerate(train_pbar):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# 更新进度条
train_pbar.set_postfix({
'loss': f'{train_loss/(batch_idx+1):.3f}',
'acc': f'{100.*correct/total:.2f}%'
})
# 保存训练阶段的准确率
train_acc = 100.*correct/total
train_correct = correct
train_total = total
# 测试阶段
model.eval()
test_loss = 0
correct = 0
total = 0
test_pbar = tqdm(testloader, desc=f'Epoch {epoch+1}/{epochs} [Test]')
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_pbar):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# 更新进度条
test_pbar.set_postfix({
'loss': f'{test_loss/(batch_idx+1):.3f}',
'acc': f'{100.*correct/total:.2f}%'
})
# 计算测试精度
acc = 100.*correct/total
# 记录训练和测试的损失与准确率
logger.info(f'Epoch: {epoch+1} | Train Loss: {train_loss/(len(trainloader)):.3f} | Train Acc: {train_acc:.2f}% | '
f'Test Loss: {test_loss/(batch_idx+1):.3f} | Test Acc: {acc:.2f}%')
# 保存可视化训练过程所需要的文件
if (epoch + 1) % interval == 0 or (epoch == 0):
# 创建一个专门用于收集embedding的顺序dataloader,拼接训练集和测试集
from torch.utils.data import ConcatDataset
def custom_collate_fn(batch):
# 确保所有数据都是张量
data = [item[0] for item in batch] # 图像
target = [item[1] for item in batch] # 标签
# 将列表转换为张量
data = torch.stack(data, 0)
target = torch.tensor(target)
return [data, target]
# 合并训练集和测试集
combined_dataset = ConcatDataset([trainloader.dataset, testloader.dataset])
# 创建顺序数据加载器
ordered_loader = torch.utils.data.DataLoader(
combined_dataset, # 使用合并后的数据集
batch_size=trainloader.batch_size,
shuffle=False, # 确保顺序加载
num_workers=trainloader.num_workers,
collate_fn=custom_collate_fn # 使用自定义的collate函数
)
epoch_save_dir = os.path.join(save_dir, f'epoch_{epoch+1}')
save_model = time_travel_saver(model, ordered_loader, device, epoch_save_dir, model_name,
show=True, layer_name='avgpool', auto_save_embedding=True)
save_model.save_checkpoint_embeddings_predictions()
if epoch == 0:
save_model.save_lables_index(path = "../dataset")
scheduler.step()
logger.info('训练完成!')
def backdoor_train():
"""训练带后门的模型
后门攻击设计:
1. 触发器设计: 在图像右下角添加一个4x4的白色小方块
2. 攻击目标: 使添加触发器的图像被分类为目标标签(默认为0)
3. 毒化比例: 默认10%的训练数据被添加触发器和修改标签
"""
# 加载配置文件
config_path = Path(__file__).parent / 'train.yaml'
with open(config_path) as f:
config = yaml.safe_load(f)
# 加载后门配置
poison_ratio = config.get('poison_ratio', 0.1) # 毒化比例
target_label = config.get('target_label', 0) # 目标标签
trigger_size = config.get('trigger_size', 4) # 触发器大小
# 创建模型
model = MobileNetV3(num_classes=10)
# 获取数据加载器
trainloader, testloader = get_cifar10_dataloaders(
batch_size=config['batch_size'],
num_workers=config['num_workers'],
local_dataset_path=config['dataset_path'],
shuffle=True
)
# 向训练数据注入后门
poisoned_trainloader = inject_backdoor(
trainloader,
poison_ratio=poison_ratio,
target_label=target_label,
trigger_size=trigger_size
)
# 创建用于测试后门效果的数据集(全部添加触发器,不改变标签)
backdoor_testloader = create_backdoor_testset(
testloader,
trigger_size=trigger_size
)
# 训练模型
train_model(
model=model,
trainloader=poisoned_trainloader,
testloader=testloader,
epochs=config['epochs'],
lr=config['lr'],
device=f'cuda:{config["gpu"]}',
save_dir='../epochs',
model_name='MobileNetV3_Backdoored',
interval=config['interval']
)
# 评估后门效果
evaluate_backdoor(model, testloader, backdoor_testloader, target_label, f'cuda:{config["gpu"]}')
def inject_backdoor(dataloader, poison_ratio=0.1, target_label=0, trigger_size=4):
"""向数据集中注入后门
Args:
dataloader: 原始数据加载器
poison_ratio: 毒化比例,即有多少比例的数据被注入后门
target_label: 攻击目标标签
trigger_size: 触发器大小
Returns:
poisoned_dataloader: 注入后门的数据加载器
"""
# 获取原始数据集
dataset = dataloader.dataset
# 获取数据和标签
data_list = []
targets_list = []
# 逐批次处理数据
for inputs, targets in dataloader:
data_list.append(inputs)
targets_list.append(targets)
# 合并所有批次数据
all_data = torch.cat(data_list)
all_targets = torch.cat(targets_list)
# 确定要毒化的样本数量
num_samples = len(all_data)
num_poisoned = int(num_samples * poison_ratio)
# 随机选择要毒化的样本索引
poison_indices = torch.randperm(num_samples)[:num_poisoned]
# 保存中毒的索引到backdoor_index.npy
backdoor_index_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'dataset', 'backdoor_index.npy')
os.makedirs(os.path.dirname(backdoor_index_path), exist_ok=True)
np.save(backdoor_index_path, poison_indices.cpu().numpy())
print(f"已保存{num_poisoned}个中毒样本索引到 {backdoor_index_path}")
# 添加触发器并修改标签
for idx in poison_indices:
# 添加触发器(右下角白色小方块)
all_data[idx, :, -trigger_size:, -trigger_size:] = 1.0
# 修改标签为目标标签
all_targets[idx] = target_label
# 创建新的TensorDataset
from torch.utils.data import TensorDataset, DataLoader
poisoned_dataset = TensorDataset(all_data, all_targets)
# 创建新的DataLoader
poisoned_dataloader = DataLoader(
poisoned_dataset,
batch_size=dataloader.batch_size,
shuffle=True,
num_workers=dataloader.num_workers
)
print(f"成功向{num_poisoned}/{num_samples} ({poison_ratio*100:.1f}%)的样本注入后门")
return poisoned_dataloader
def create_backdoor_testset(dataloader, trigger_size=4):
"""创建用于测试后门效果的数据集,将所有测试样本添加触发器但不改变标签
Args:
dataloader: 原始测试数据加载器
trigger_size: 触发器大小
Returns:
backdoor_testloader: 带触发器的测试数据加载器
"""
# 获取原始数据和标签
data_list = []
targets_list = []
for inputs, targets in dataloader:
data_list.append(inputs)
targets_list.append(targets)
# 合并所有批次数据
all_data = torch.cat(data_list)
all_targets = torch.cat(targets_list)
# 向所有测试样本添加触发器
for i in range(len(all_data)):
# 添加触发器(右下角白色小方块)
all_data[i, :, -trigger_size:, -trigger_size:] = 1.0
# 创建新的TensorDataset
from torch.utils.data import TensorDataset, DataLoader
backdoor_dataset = TensorDataset(all_data, all_targets)
# 创建新的DataLoader
backdoor_testloader = DataLoader(
backdoor_dataset,
batch_size=dataloader.batch_size,
shuffle=False,
num_workers=dataloader.num_workers
)
print(f"成功创建带有触发器的测试集,共{len(all_data)}个样本")
return backdoor_testloader
def evaluate_backdoor(model, clean_testloader, backdoor_testloader, target_label, device):
"""评估后门攻击效果
Args:
model: 模型
clean_testloader: 干净测试集
backdoor_testloader: 带触发器的测试集
target_label: 目标标签
device: 计算设备
"""
model.eval()
model.to(device)
# 评估在干净测试集上的准确率
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in tqdm(clean_testloader, desc="评估干净测试集"):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
clean_acc = 100. * correct / total
print(f"在干净测试集上的准确率: {clean_acc:.2f}%")
# 评估后门攻击成功率
success = 0
total = 0
with torch.no_grad():
for inputs, targets in tqdm(backdoor_testloader, desc="评估后门攻击"):
inputs = inputs.to(device)
outputs = model(inputs)
_, predicted = outputs.max(1)
total += targets.size(0)
# 计算被预测为目标标签的样本数量
success += (predicted == target_label).sum().item()
asr = 100. * success / total # 攻击成功率(Attack Success Rate)
print(f"后门攻击成功率: {asr:.2f}%")
return clean_acc, asr
if __name__ == '__main__':
backdoor_train() |