Datasets:

Languages:
English
ArXiv:
License:
File size: 9,687 Bytes
5f93979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cd0988
5f93979
 
 
 
 
 
 
3efecce
5f93979
 
 
 
 
 
 
 
8cd0988
3efecce
5f93979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a2aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f93979
 
 
d5a2aed
 
 
 
 
 
 
5f93979
 
 
 
 
 
 
 
 
d5a2aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e825117
d5a2aed
 
 
 
5f93979
 
 
 
 
 
 
 
335151c
5f93979
d5a2aed
5f93979
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Medical BIOS"""

import json
import os
import textwrap

import datasets


MAIN_CITATION = """NA"""
_DESCRIPTION = """NA"""
MAIN_PATH = 'https://huggingface.co/datasets/coastalcph/medical-bios/resolve/main'


class MedicalBIOSConfig(datasets.BuilderConfig):
    """BuilderConfig for Medical BIOS."""

    def __init__(
        self,
        label_classes,
        url,
        data_url,
        citation,
        **kwargs,
    ):
        """BuilderConfig for Medical BIOS.
        Args:
          label_classes: `list`, list of label classes
          url: `string`, url for the original project
          data_url: `string`, url to download the zip file from
          data_file: `string`, filename for data set
          citation: `string`, citation for the data set
          url: `string`, url for information about the data set
          **kwargs: keyword arguments forwarded to super.
        """
        super(MedicalBIOSConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
        self.label_classes = label_classes
        self.url = url
        self.data_url = data_url
        self.citation = citation


class XAIFairness(datasets.GeneratorBasedBuilder):
    """Fairlex: A multilingual benchmark for evaluating fairness in legal text processing. Version 1.0"""

    BUILDER_CONFIGS = [
        MedicalBIOSConfig(
            name="standard",
            description=textwrap.dedent(
                """\
                The dataset is based on the Common Crawl. Specifically, De-Arteaga et al. identified online
                biographies, written in English, by filtering for lines that began
                with a name-like pattern (i.e., a sequence of two capitalized words)
                followed by the string “is a(n) (xxx) title,” where title is 
                an occupation from the BLS Standard Occupation Classification system.
                This version of the dataset comprises English biographies labeled with occupations.
                We also include a subset of biographies labeled with human rationales.
                """
            ),
            label_classes=['psychologist', 'surgeon', 'nurse', 'dentist', 'physician'],
            data_url=os.path.join(MAIN_PATH, "bios.zip"),
            url="https://github.com/microsoft/biosbias",
            citation=textwrap.dedent(
                """\
            @inproceedings{10.1145/3287560.3287572,
                            author = {De-Arteaga, Maria and Romanov, Alexey and Wallach, Hanna and Chayes, 
                            Jennifer and Borgs, Christian and Chouldechova, Alexandra and Geyik, Sahin 
                            and Kenthapadi, Krishnaram and Kalai, Adam Tauman},
                            title = {Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting},
                            year = {2019},
                            isbn = {9781450361255},
                            publisher = {Association for Computing Machinery},
                            address = {New York, NY, USA},
                            url = {https://doi.org/10.1145/3287560.3287572},
                            doi = {10.1145/3287560.3287572},
                            booktitle = {Proceedings of the Conference on Fairness, Accountability, and Transparency},
                            pages = {120–128},
                            numpages = {9},
                            location = {Atlanta, GA, USA},
                            series = {FAT* '19}
            }"""
            ),
        ),
        MedicalBIOSConfig(
            name="rationales",
            description=textwrap.dedent(
                """\
                The dataset is based on the Common Crawl. Specifically, De-Arteaga et al. identified online
                biographies, written in English, by filtering for lines that began
                with a name-like pattern (i.e., a sequence of two capitalized words)
                followed by the string “is a(n) (xxx) title,” where title is 
                an occupation from the BLS Standard Occupation Classification system.
                This version of the dataset comprises English biographies labeled with occupations.
                We also include a subset of biographies labeled with human rationales.
                """
            ),
            label_classes=['psychologist', 'surgeon', 'nurse', 'dentist', 'physician'],
            data_url=os.path.join(MAIN_PATH, "bios.zip"),
            url="https://github.com/microsoft/biosbias",
            citation=textwrap.dedent(
                """\
            @inproceedings{10.1145/3287560.3287572,
                            author = {De-Arteaga, Maria and Romanov, Alexey and Wallach, Hanna and Chayes, 
                            Jennifer and Borgs, Christian and Chouldechova, Alexandra and Geyik, Sahin 
                            and Kenthapadi, Krishnaram and Kalai, Adam Tauman},
                            title = {Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting},
                            year = {2019},
                            isbn = {9781450361255},
                            publisher = {Association for Computing Machinery},
                            address = {New York, NY, USA},
                            url = {https://doi.org/10.1145/3287560.3287572},
                            doi = {10.1145/3287560.3287572},
                            booktitle = {Proceedings of the Conference on Fairness, Accountability, and Transparency},
                            pages = {120–128},
                            numpages = {9},
                            location = {Atlanta, GA, USA},
                            series = {FAT* '19}
            }"""
            ),
        ),
    ]

    def _info(self):
        if self.config.name == "standard":
            features = {"text": datasets.Value("string"), "label": datasets.ClassLabel(names=self.config.label_classes)}
        else:
            features = {"text": datasets.Value("string"), "label": datasets.ClassLabel(names=self.config.label_classes),
                        "foil": datasets.ClassLabel(names=self.config.label_classes),
                        "words": datasets.Sequence(datasets.Value("string")),
                        "rationales": datasets.Sequence(datasets.Value("int"))}
        return datasets.DatasetInfo(
            description=self.config.description,
            features=datasets.Features(features),
            homepage=self.config.url,
            citation=self.config.citation + "\n" + MAIN_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(self.config.data_url)
        if self.config.name == 'standard':
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, f"train.jsonl"),
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "test.jsonl"),
                        "split": "test",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, f"validation.jsonl"),
                        "split": "val",
                    },
                ),
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "test_rationales.jsonl"),
                        "split": "test",
                    },
                ),
            ]

    def _generate_examples(self, filepath, split):
        """This function returns the examples in the raw (text) form."""
        with open(filepath, encoding="utf-8") as f:
            for id_, row in enumerate(f):
                data = json.loads(row)
                example = {
                    "text": data["text"],
                    "label": data["title"]
                }
                if self.config.name == "rationales":
                    example["foil"] = data["foil"]
                    example["words"] = data["words"]
                    example["rationales"] = data["rationales"]
                    example["contrastive_rationales"] = data["contrastive_rationales"]
                yield id_, example