Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
intent-classification
Languages:
English
Size:
10K - 100K
License:
File size: 8,567 Bytes
6dbbfc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
"""An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction"""
import json
import textwrap
import datasets
_CITATION = """\
@inproceedings{larson-etal-2019-evaluation,
title = "An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction",
author = "Larson, Stefan and
Mahendran, Anish and
Peper, Joseph J. and
Clarke, Christopher and
Lee, Andrew and
Hill, Parker and
Kummerfeld, Jonathan K. and
Leach, Kevin and
Laurenzano, Michael A. and
Tang, Lingjia and
Mars, Jason",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
year = "2019",
url = "https://www.aclweb.org/anthology/D19-1131"
}
"""
_DESCRIPTION = """\
This dataset is for evaluating the performance of intent classification systems in the
presence of "out-of-scope" queries. By "out-of-scope", we mean queries that do not fall
into any of the system-supported intent classes. Most datasets include only data that is
"in-scope". Our dataset includes both in-scope and out-of-scope data. You might also know
the term "out-of-scope" by other terms, including "out-of-domain" or "out-of-distribution".
"""
_DESCRIPTIONS = {
"small": textwrap.dedent(
"""\
Small, in which there are only 50 training queries per each in-scope intent
"""
),
"imbalanced": textwrap.dedent(
"""\
Imbalanced, in which intents have either 25, 50, 75, or 100 training queries.
"""
),
"plus": textwrap.dedent(
"""\
OOS+, in which there are 250 out-of-scope training examples, rather than 100.
"""
),
}
_URL = "https://github.com/clinc/oos-eval/"
_DATA_URLS = {
"small": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_small.json",
"imbalanced": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_imbalanced.json",
"plus": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_oos_plus.json",
}
class ClincConfig(datasets.BuilderConfig):
"""BuilderConfig for CLINC150"""
def __init__(self, description, data_url, citation, url, **kwrags):
"""
Args:
description: `string`, brief description of the dataset
data_url: `dictionary`, dict with url for each split of data.
citation: `string`, citation for the dataset.
url: `string`, url for information about the dataset.
**kwrags: keyword arguments frowarded to super
"""
super(ClincConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwrags)
self.description = description
self.data_url = data_url
self.citation = citation
self.url = url
class ClincOos(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
ClincConfig(
name=name, description=_DESCRIPTIONS[name], data_url=_DATA_URLS[name], citation=_CITATION, url=_URL
)
for name in ["small", "imbalanced", "plus"]
]
def _info(self):
features = {}
features["text"] = datasets.Value("string")
labels_list = [
"restaurant_reviews",
"nutrition_info",
"account_blocked",
"oil_change_how",
"time",
"weather",
"redeem_rewards",
"interest_rate",
"gas_type",
"accept_reservations",
"smart_home",
"user_name",
"report_lost_card",
"repeat",
"whisper_mode",
"what_are_your_hobbies",
"order",
"jump_start",
"schedule_meeting",
"meeting_schedule",
"freeze_account",
"what_song",
"meaning_of_life",
"restaurant_reservation",
"traffic",
"make_call",
"text",
"bill_balance",
"improve_credit_score",
"change_language",
"no",
"measurement_conversion",
"timer",
"flip_coin",
"do_you_have_pets",
"balance",
"tell_joke",
"last_maintenance",
"exchange_rate",
"uber",
"car_rental",
"credit_limit",
"oos",
"shopping_list",
"expiration_date",
"routing",
"meal_suggestion",
"tire_change",
"todo_list",
"card_declined",
"rewards_balance",
"change_accent",
"vaccines",
"reminder_update",
"food_last",
"change_ai_name",
"bill_due",
"who_do_you_work_for",
"share_location",
"international_visa",
"calendar",
"translate",
"carry_on",
"book_flight",
"insurance_change",
"todo_list_update",
"timezone",
"cancel_reservation",
"transactions",
"credit_score",
"report_fraud",
"spending_history",
"directions",
"spelling",
"insurance",
"what_is_your_name",
"reminder",
"where_are_you_from",
"distance",
"payday",
"flight_status",
"find_phone",
"greeting",
"alarm",
"order_status",
"confirm_reservation",
"cook_time",
"damaged_card",
"reset_settings",
"pin_change",
"replacement_card_duration",
"new_card",
"roll_dice",
"income",
"taxes",
"date",
"who_made_you",
"pto_request",
"tire_pressure",
"how_old_are_you",
"rollover_401k",
"pto_request_status",
"how_busy",
"application_status",
"recipe",
"calendar_update",
"play_music",
"yes",
"direct_deposit",
"credit_limit_change",
"gas",
"pay_bill",
"ingredients_list",
"lost_luggage",
"goodbye",
"what_can_i_ask_you",
"book_hotel",
"are_you_a_bot",
"next_song",
"change_speed",
"plug_type",
"maybe",
"w2",
"oil_change_when",
"thank_you",
"shopping_list_update",
"pto_balance",
"order_checks",
"travel_alert",
"fun_fact",
"sync_device",
"schedule_maintenance",
"apr",
"transfer",
"ingredient_substitution",
"calories",
"current_location",
"international_fees",
"calculator",
"definition",
"next_holiday",
"update_playlist",
"mpg",
"min_payment",
"change_user_name",
"restaurant_suggestion",
"travel_notification",
"cancel",
"pto_used",
"travel_suggestion",
"change_volume",
]
features["intent"] = datasets.ClassLabel(names=labels_list)
return datasets.DatasetInfo(
description=_DESCRIPTION + "\n" + self.config.description,
features=datasets.Features(features),
homepage=self.config.url,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
file_ = dl_manager.download_and_extract(self.config.data_url)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_, "split": "train"}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": file_, "split": "val"}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": file_, "split": "test"}),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
j = json.load(f)
for id_, row in enumerate(j[split] + j["oos_" + split]):
yield id_, {"text": row[0], "intent": row[1]}
|