Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 8,567 Bytes
6dbbfc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction"""


import json
import textwrap

import datasets


_CITATION = """\
    @inproceedings{larson-etal-2019-evaluation,
    title = "An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction",
    author = "Larson, Stefan  and
      Mahendran, Anish  and
      Peper, Joseph J.  and
      Clarke, Christopher  and
      Lee, Andrew  and
      Hill, Parker  and
      Kummerfeld, Jonathan K.  and
      Leach, Kevin  and
      Laurenzano, Michael A.  and
      Tang, Lingjia  and
      Mars, Jason",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
    year = "2019",
    url = "https://www.aclweb.org/anthology/D19-1131"
}
"""

_DESCRIPTION = """\
    This dataset is for evaluating the performance of intent classification systems in the
    presence of "out-of-scope" queries. By "out-of-scope", we mean queries that do not fall
    into any of the system-supported intent classes. Most datasets include only data that is
    "in-scope". Our dataset includes both in-scope and out-of-scope data. You might also know
    the term "out-of-scope" by other terms, including "out-of-domain" or "out-of-distribution".
"""

_DESCRIPTIONS = {
    "small": textwrap.dedent(
        """\
        Small, in which there are only 50 training queries per each in-scope intent
        """
    ),
    "imbalanced": textwrap.dedent(
        """\
        Imbalanced, in which intents have either 25, 50, 75, or 100 training queries.
        """
    ),
    "plus": textwrap.dedent(
        """\
        OOS+, in which there are 250 out-of-scope training examples, rather than 100.
        """
    ),
}

_URL = "https://github.com/clinc/oos-eval/"

_DATA_URLS = {
    "small": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_small.json",
    "imbalanced": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_imbalanced.json",
    "plus": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_oos_plus.json",
}


class ClincConfig(datasets.BuilderConfig):

    """BuilderConfig for CLINC150"""

    def __init__(self, description, data_url, citation, url, **kwrags):
        """
        Args:
            description: `string`, brief description of the dataset
            data_url: `dictionary`, dict with url for each split of data.
            citation: `string`, citation for the dataset.
            url: `string`, url for information about the dataset.
            **kwrags: keyword arguments frowarded to super
        """
        super(ClincConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwrags)
        self.description = description
        self.data_url = data_url
        self.citation = citation
        self.url = url


class ClincOos(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        ClincConfig(
            name=name, description=_DESCRIPTIONS[name], data_url=_DATA_URLS[name], citation=_CITATION, url=_URL
        )
        for name in ["small", "imbalanced", "plus"]
    ]

    def _info(self):
        features = {}
        features["text"] = datasets.Value("string")
        labels_list = [
            "restaurant_reviews",
            "nutrition_info",
            "account_blocked",
            "oil_change_how",
            "time",
            "weather",
            "redeem_rewards",
            "interest_rate",
            "gas_type",
            "accept_reservations",
            "smart_home",
            "user_name",
            "report_lost_card",
            "repeat",
            "whisper_mode",
            "what_are_your_hobbies",
            "order",
            "jump_start",
            "schedule_meeting",
            "meeting_schedule",
            "freeze_account",
            "what_song",
            "meaning_of_life",
            "restaurant_reservation",
            "traffic",
            "make_call",
            "text",
            "bill_balance",
            "improve_credit_score",
            "change_language",
            "no",
            "measurement_conversion",
            "timer",
            "flip_coin",
            "do_you_have_pets",
            "balance",
            "tell_joke",
            "last_maintenance",
            "exchange_rate",
            "uber",
            "car_rental",
            "credit_limit",
            "oos",
            "shopping_list",
            "expiration_date",
            "routing",
            "meal_suggestion",
            "tire_change",
            "todo_list",
            "card_declined",
            "rewards_balance",
            "change_accent",
            "vaccines",
            "reminder_update",
            "food_last",
            "change_ai_name",
            "bill_due",
            "who_do_you_work_for",
            "share_location",
            "international_visa",
            "calendar",
            "translate",
            "carry_on",
            "book_flight",
            "insurance_change",
            "todo_list_update",
            "timezone",
            "cancel_reservation",
            "transactions",
            "credit_score",
            "report_fraud",
            "spending_history",
            "directions",
            "spelling",
            "insurance",
            "what_is_your_name",
            "reminder",
            "where_are_you_from",
            "distance",
            "payday",
            "flight_status",
            "find_phone",
            "greeting",
            "alarm",
            "order_status",
            "confirm_reservation",
            "cook_time",
            "damaged_card",
            "reset_settings",
            "pin_change",
            "replacement_card_duration",
            "new_card",
            "roll_dice",
            "income",
            "taxes",
            "date",
            "who_made_you",
            "pto_request",
            "tire_pressure",
            "how_old_are_you",
            "rollover_401k",
            "pto_request_status",
            "how_busy",
            "application_status",
            "recipe",
            "calendar_update",
            "play_music",
            "yes",
            "direct_deposit",
            "credit_limit_change",
            "gas",
            "pay_bill",
            "ingredients_list",
            "lost_luggage",
            "goodbye",
            "what_can_i_ask_you",
            "book_hotel",
            "are_you_a_bot",
            "next_song",
            "change_speed",
            "plug_type",
            "maybe",
            "w2",
            "oil_change_when",
            "thank_you",
            "shopping_list_update",
            "pto_balance",
            "order_checks",
            "travel_alert",
            "fun_fact",
            "sync_device",
            "schedule_maintenance",
            "apr",
            "transfer",
            "ingredient_substitution",
            "calories",
            "current_location",
            "international_fees",
            "calculator",
            "definition",
            "next_holiday",
            "update_playlist",
            "mpg",
            "min_payment",
            "change_user_name",
            "restaurant_suggestion",
            "travel_notification",
            "cancel",
            "pto_used",
            "travel_suggestion",
            "change_volume",
        ]
        features["intent"] = datasets.ClassLabel(names=labels_list)

        return datasets.DatasetInfo(
            description=_DESCRIPTION + "\n" + self.config.description,
            features=datasets.Features(features),
            homepage=self.config.url,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        file_ = dl_manager.download_and_extract(self.config.data_url)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_, "split": "train"}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": file_, "split": "val"}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": file_, "split": "test"}),
        ]

    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            j = json.load(f)
            for id_, row in enumerate(j[split] + j["oos_" + split]):
                yield id_, {"text": row[0], "intent": row[1]}