File size: 4,248 Bytes
655fc53 cf6db77 655fc53 cf6db77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license: cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
pretty_name: EnvironmentalClaims
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': 'no'
'1': 'yes'
splits:
- name: train
num_bytes: 394717
num_examples: 2400
- name: test
num_bytes: 50016
num_examples: 300
- name: validation
num_bytes: 49274
num_examples: 300
download_size: 307811
dataset_size: 494007
---
# Dataset Card for environmental_claims
## Dataset Description
- **Homepage:** [climatebert.ai](https://climatebert.ai)
- **Repository:**
- **Paper:** [arxiv.org/abs/2209.00507](https://arxiv.org/abs/2209.00507)
- **Leaderboard:**
- **Point of Contact:** [Dominik Stammbach](mailto:dominsta@ethz.ch)
### Dataset Summary
We introduce an expert-annotated dataset for detecting real-world environmental claims made by listed companies.
### Supported Tasks and Leaderboards
The dataset supports a binary classification task of whether a given sentence is an environmental claim or not.
### Languages
The text in the dataset is in English.
## Dataset Structure
### Data Instances
```
{
"text": "It will enable E.ON to acquire and leverage a comprehensive understanding of the transfor- mation of the energy system and the interplay between the individual submarkets in regional and local energy supply sys- tems.",
"label": 0
}
```
### Data Fields
- text: a sentence extracted from corporate annual reports, sustainability reports and earning calls transcripts
- label: the label (0 -> no environmental claim, 1 -> environmental claim)
### Data Splits
The dataset is split into:
- train: 2,400
- validation: 300
- test: 300
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
Our dataset contains environmental claims by firms, often in the financial domain. We collect text from corporate annual reports, sustainability reports, and earning calls transcripts.
For more information regarding our sample selection, please refer to Appendix B of our paper, which is provided for [citation](#citation-information).
#### Who are the source language producers?
Mainly large listed companies.
### Annotations
#### Annotation process
For more information on our annotation process and annotation guidelines, please refer to Appendix C of our paper, which is provided for [citation](#citation-information).
#### Who are the annotators?
The authors and students at University of Zurich with majors in finance and sustainable finance.
### Personal and Sensitive Information
Since our text sources contain public information, no personal and sensitive information should be included.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
- Dominik Stammbach
- Nicolas Webersinke
- Julia Anna Bingler
- Mathias Kraus
- Markus Leippold
### Licensing Information
This dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license (cc-by-nc-sa-4.0). To view a copy of this license, visit [creativecommons.org/licenses/by-nc-sa/4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/).
If you are interested in commercial use of the dataset, please contact [markus.leippold@bf.uzh.ch](mailto:markus.leippold@bf.uzh.ch).
### Citation Information
```bibtex
@misc{stammbach2022environmentalclaims,
title = {A Dataset for Detecting Real-World Environmental Claims},
author = {Stammbach, Dominik and Webersinke, Nicolas and Bingler, Julia Anna and Kraus, Mathias and Leippold, Markus},
year = {2022},
doi = {10.48550/ARXIV.2209.00507},
url = {https://arxiv.org/abs/2209.00507},
publisher = {arXiv},
}
```
### Contributions
Thanks to [@webersni](https://github.com/webersni) for adding this dataset. |