Datasets:
File size: 45,503 Bytes
0cea569 4038893 a5dbb5f 0cea569 d4715d7 d8462d6 d4715d7 a5dbb5f f007358 d8462d6 2f3f40c a8ae399 2f3f40c 32d5b46 e6412a6 32d5b46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 |
---
license: mit
task_categories:
- text-classification
language:
- en
size_categories:
- 1M<n<10M
annotations_creators:
- no-annotation
multilinguality:
- monolingual
pretty_name: UTCD
dataset_info:
- config_name: in-domain
features:
- name: text
dtype: string
- name: labels
sequence:
class_label:
names:
'0': Add Alarm
'1': Album
'2': Animal
'3': Artist
'4': Athlete
'5': Book Appointment
'6': Book House
'7': Building
'8': Business
'9': Business & Finance
'10': Buy Bus Ticket
'11': Buy Event Tickets
'12': Buy Movie Tickets
'13': Check Balance
'14': Company
'15': Computers & Internet
'16': Education & Reference
'17': Educational Institution
'18': Entertainment & Music
'19': Family & Relationships
'20': Film
'21': Find Apartment
'22': Find Attractions
'23': Find Bus
'24': Find Events
'25': Find Home By Area
'26': Find Movies
'27': Find Provider
'28': Find Restaurants
'29': Find Trains
'30': Get Alarms
'31': Get Available Time
'32': Get Cars Available
'33': Get Event Dates
'34': Get Events
'35': Get Ride
'36': Get Times For Movie
'37': Get Weather
'38': Health
'39': Lookup Music
'40': Lookup Song
'41': Make Payment
'42': Mean Of Transportation
'43': Natural Place
'44': Office Holder
'45': Plant
'46': Play Media
'47': Play Movie
'48': Play Song
'49': Politics & Government
'50': Request Payment
'51': Reserve Car
'52': Reserve Hotel
'53': Reserve One way Flight
'54': Reserve Restaurant
'55': Reserve Round trip Flights
'56': Schedule Visit
'57': Science & Mathematics
'58': Science & Technology
'59': Search Hotel
'60': Search House
'61': Search One way Flight
'62': Search Round trip Flights
'63': Society & Culture
'64': Sports
'65': Transfer Money
'66': Village
'67': World News
'68': Written Work
'69': accept reservations
'70': account blocked
'71': add contact
'72': admiration
'73': alarm
'74': alarm query
'75': alarm remove
'76': alarm set
'77': amusement
'78': anger
'79': annoyance
'80': application status
'81': approval
'82': apr
'83': are you a bot
'84': audio volume down
'85': audio volume mute
'86': audio volume other
'87': audio volume up
'88': balance
'89': bill balance
'90': bill due
'91': book flight
'92': book hotel
'93': calculator
'94': calendar
'95': calendar query
'96': calendar remove
'97': calendar set
'98': calendar update
'99': calories
'100': cancel
'101': cancel reservation
'102': car rental
'103': card declined
'104': caring
'105': carry on
'106': change accent
'107': change ai name
'108': change language
'109': change speed
'110': change user name
'111': change volume
'112': cleaning
'113': coffee
'114': confirm reservation
'115': confusion
'116': convert
'117': cook time
'118': cooking query
'119': cooking recipe
'120': create or add
'121': credit limit
'122': credit limit change
'123': credit score
'124': curiosity
'125': currency
'126': current location
'127': damaged card
'128': date
'129': date time convert
'130': date time query
'131': definition
'132': desire
'133': direct deposit
'134': directions
'135': disappointment
'136': disapproval
'137': disgust
'138': distance
'139': do you have pets
'140': email add contact
'141': email query
'142': email query contact
'143': email send email
'144': embarrassment
'145': events
'146': exchange rate
'147': excitement
'148': expiration date
'149': factoid
'150': fear
'151': find phone
'152': flight status
'153': flip coin
'154': food last
'155': freeze account
'156': fun fact
'157': game
'158': gas
'159': gas type
'160': general greet
'161': general joke
'162': general quirky
'163': goodbye
'164': gratitude
'165': greet
'166': greeting
'167': grief
'168': how busy
'169': how old are you
'170': hue light dim
'171': hue light off
'172': hue light up
'173': improve credit score
'174': income
'175': ingredient substitution
'176': ingredients list
'177': insurance
'178': insurance change
'179': interest rate
'180': international fees
'181': international visa
'182': iot cleaning
'183': iot coffee
'184': iot hue light change
'185': iot hue light dim
'186': iot hue light off
'187': iot hue light on
'188': iot hue light up
'189': iot wemo on
'190': iot wemo plug off
'191': joke
'192': joy
'193': jump start
'194': last maintenance
'195': lists create or add
'196': lists query
'197': lists remove
'198': lost luggage
'199': love
'200': make call
'201': maybe
'202': meal suggestion
'203': meaning of life
'204': measurement conversion
'205': meeting schedule
'206': min payment
'207': mpg
'208': music
'209': music dislike ness
'210': music likeness
'211': music query
'212': music settings
'213': negative
'214': nervousness
'215': neutral
'216': new card
'217': news query
'218': next holiday
'219': next song
'220': 'no'
'221': nutrition info
'222': oil change how
'223': oil change when
'224': optimism
'225': order
'226': order checks
'227': order status
'228': paid time off request status
'229': paid time off used
'230': pay bill
'231': payday
'232': pin change
'233': play audiobook
'234': play game
'235': play music
'236': play podcasts
'237': play radio
'238': plug type
'239': podcasts
'240': positive
'241': post
'242': pride
'243': pto balance
'244': pto request
'245': qa currency
'246': qa definition
'247': qa factoid
'248': qa maths
'249': qa stock
'250': query
'251': query contact
'252': quirky
'253': radio
'254': realization
'255': recipe
'256': recommendation events
'257': recommendation locations
'258': recommendation movies
'259': redeem rewards
'260': relief
'261': reminder
'262': reminder update
'263': remorse
'264': remove
'265': repeat
'266': replacement card duration
'267': report fraud
'268': report lost card
'269': reset settings
'270': restaurant reservation
'271': restaurant reviews
'272': restaurant suggestion
'273': rewards balance
'274': roll dice
'275': rollover 401k
'276': routing
'277': sadness
'278': schedule maintenance
'279': schedule meeting
'280': send email
'281': set
'282': settings
'283': share location
'284': shopping list
'285': shopping list update
'286': smart home
'287': social post
'288': social query
'289': spelling
'290': spending history
'291': surprise
'292': sync device
'293': take away order
'294': take away query
'295': taxes
'296': tell joke
'297': text
'298': thank you
'299': ticket
'300': time
'301': timer
'302': timezone
'303': tire change
'304': tire pressure
'305': todo list
'306': todo list update
'307': traffic
'308': transactions
'309': transfer
'310': translate
'311': transport query
'312': transport taxi
'313': transport ticket
'314': transport traffic
'315': travel alert
'316': travel notification
'317': travel suggestion
'318': uber
'319': update playlist
'320': user name
'321': vaccines
'322': volume other
'323': w2 wage and tax statement
'324': weather
'325': weather query
'326': wemo off
'327': wemo plug on
'328': what are your hobbies
'329': what can i ask you
'330': what is your name
'331': what song
'332': where are you from
'333': whisper mode
'334': who do you work for
'335': who made you
'336': 'yes'
- name: dataset_name
dtype:
class_label:
names:
'0': go_emotion
'1': sentiment_tweets_2020
'2': emotion
'3': sgd
'4': clinc_150
'5': slurp
'6': ag_news
'7': dbpedia
'8': yahoo
splits:
- name: train
num_bytes: 347382307
num_examples: 2192703
- name: test
num_bytes: 36063588
num_examples: 168365
download_size: 1744258165
dataset_size: 383445895
- config_name: aspect-normalized-in-domain
features:
- name: text
dtype: string
- name: labels
sequence:
class_label:
names:
'0': Add Alarm
'1': Album
'2': Animal
'3': Artist
'4': Athlete
'5': Book Appointment
'6': Book House
'7': Building
'8': Business
'9': Business & Finance
'10': Buy Bus Ticket
'11': Buy Event Tickets
'12': Buy Movie Tickets
'13': Check Balance
'14': Company
'15': Computers & Internet
'16': Education & Reference
'17': Educational Institution
'18': Entertainment & Music
'19': Family & Relationships
'20': Film
'21': Find Apartment
'22': Find Attractions
'23': Find Bus
'24': Find Events
'25': Find Home By Area
'26': Find Movies
'27': Find Provider
'28': Find Restaurants
'29': Find Trains
'30': Get Alarms
'31': Get Available Time
'32': Get Cars Available
'33': Get Event Dates
'34': Get Events
'35': Get Ride
'36': Get Times For Movie
'37': Get Weather
'38': Health
'39': Lookup Music
'40': Lookup Song
'41': Make Payment
'42': Mean Of Transportation
'43': Natural Place
'44': Office Holder
'45': Plant
'46': Play Media
'47': Play Movie
'48': Play Song
'49': Politics & Government
'50': Request Payment
'51': Reserve Car
'52': Reserve Hotel
'53': Reserve One way Flight
'54': Reserve Restaurant
'55': Reserve Round trip Flights
'56': Schedule Visit
'57': Science & Mathematics
'58': Science & Technology
'59': Search Hotel
'60': Search House
'61': Search One way Flight
'62': Search Round trip Flights
'63': Society & Culture
'64': Sports
'65': Transfer Money
'66': Village
'67': World News
'68': Written Work
'69': accept reservations
'70': account blocked
'71': add contact
'72': admiration
'73': alarm
'74': alarm query
'75': alarm remove
'76': alarm set
'77': amusement
'78': anger
'79': annoyance
'80': application status
'81': approval
'82': apr
'83': are you a bot
'84': audio volume down
'85': audio volume mute
'86': audio volume other
'87': audio volume up
'88': balance
'89': bill balance
'90': bill due
'91': book flight
'92': book hotel
'93': calculator
'94': calendar
'95': calendar query
'96': calendar remove
'97': calendar set
'98': calendar update
'99': calories
'100': cancel
'101': cancel reservation
'102': car rental
'103': card declined
'104': caring
'105': carry on
'106': change accent
'107': change ai name
'108': change language
'109': change speed
'110': change user name
'111': change volume
'112': cleaning
'113': coffee
'114': confirm reservation
'115': confusion
'116': convert
'117': cook time
'118': cooking query
'119': cooking recipe
'120': create or add
'121': credit limit
'122': credit limit change
'123': credit score
'124': curiosity
'125': currency
'126': current location
'127': damaged card
'128': date
'129': date time convert
'130': date time query
'131': definition
'132': desire
'133': direct deposit
'134': directions
'135': disappointment
'136': disapproval
'137': disgust
'138': distance
'139': do you have pets
'140': email add contact
'141': email query
'142': email query contact
'143': email send email
'144': embarrassment
'145': events
'146': exchange rate
'147': excitement
'148': expiration date
'149': factoid
'150': fear
'151': find phone
'152': flight status
'153': flip coin
'154': food last
'155': freeze account
'156': fun fact
'157': game
'158': gas
'159': gas type
'160': general greet
'161': general joke
'162': general quirky
'163': goodbye
'164': gratitude
'165': greet
'166': greeting
'167': grief
'168': how busy
'169': how old are you
'170': hue light dim
'171': hue light off
'172': hue light up
'173': improve credit score
'174': income
'175': ingredient substitution
'176': ingredients list
'177': insurance
'178': insurance change
'179': interest rate
'180': international fees
'181': international visa
'182': iot cleaning
'183': iot coffee
'184': iot hue light change
'185': iot hue light dim
'186': iot hue light off
'187': iot hue light on
'188': iot hue light up
'189': iot wemo on
'190': iot wemo plug off
'191': joke
'192': joy
'193': jump start
'194': last maintenance
'195': lists create or add
'196': lists query
'197': lists remove
'198': lost luggage
'199': love
'200': make call
'201': maybe
'202': meal suggestion
'203': meaning of life
'204': measurement conversion
'205': meeting schedule
'206': min payment
'207': mpg
'208': music
'209': music dislike ness
'210': music likeness
'211': music query
'212': music settings
'213': negative
'214': nervousness
'215': neutral
'216': new card
'217': news query
'218': next holiday
'219': next song
'220': 'no'
'221': nutrition info
'222': oil change how
'223': oil change when
'224': optimism
'225': order
'226': order checks
'227': order status
'228': paid time off request status
'229': paid time off used
'230': pay bill
'231': payday
'232': pin change
'233': play audiobook
'234': play game
'235': play music
'236': play podcasts
'237': play radio
'238': plug type
'239': podcasts
'240': positive
'241': post
'242': pride
'243': pto balance
'244': pto request
'245': qa currency
'246': qa definition
'247': qa factoid
'248': qa maths
'249': qa stock
'250': query
'251': query contact
'252': quirky
'253': radio
'254': realization
'255': recipe
'256': recommendation events
'257': recommendation locations
'258': recommendation movies
'259': redeem rewards
'260': relief
'261': reminder
'262': reminder update
'263': remorse
'264': remove
'265': repeat
'266': replacement card duration
'267': report fraud
'268': report lost card
'269': reset settings
'270': restaurant reservation
'271': restaurant reviews
'272': restaurant suggestion
'273': rewards balance
'274': roll dice
'275': rollover 401k
'276': routing
'277': sadness
'278': schedule maintenance
'279': schedule meeting
'280': send email
'281': set
'282': settings
'283': share location
'284': shopping list
'285': shopping list update
'286': smart home
'287': social post
'288': social query
'289': spelling
'290': spending history
'291': surprise
'292': sync device
'293': take away order
'294': take away query
'295': taxes
'296': tell joke
'297': text
'298': thank you
'299': ticket
'300': time
'301': timer
'302': timezone
'303': tire change
'304': tire pressure
'305': todo list
'306': todo list update
'307': traffic
'308': transactions
'309': transfer
'310': translate
'311': transport query
'312': transport taxi
'313': transport ticket
'314': transport traffic
'315': travel alert
'316': travel notification
'317': travel suggestion
'318': uber
'319': update playlist
'320': user name
'321': vaccines
'322': volume other
'323': w2 wage and tax statement
'324': weather
'325': weather query
'326': wemo off
'327': wemo plug on
'328': what are your hobbies
'329': what can i ask you
'330': what is your name
'331': what song
'332': where are you from
'333': whisper mode
'334': who do you work for
'335': who made you
'336': 'yes'
- name: dataset_name
dtype:
class_label:
names:
'0': go_emotion
'1': sentiment_tweets_2020
'2': emotion
'3': sgd
'4': clinc_150
'5': slurp
'6': ag_news
'7': dbpedia
'8': yahoo
splits:
- name: train
num_bytes: 28974188
num_examples: 115127
- name: validation
num_bytes: 3213586
num_examples: 12806
- name: test
num_bytes: 36063590
num_examples: 168365
download_size: 1744258165
dataset_size: 68251364
- config_name: out-of-domain
features:
- name: text
dtype: string
- name: labels
sequence:
class_label:
names:
'0': Add To Playlist
'1': Bank account or service
'2': Book Restaurant
'3': Checking or savings account
'4': Chemistry; Metallurgy
'5': Consumer Loan
'6': Credit card
'7': Credit card or prepaid card
'8': Credit reporting
'9': Credit reporting, credit repair services, or other personal consumer
reports
'10': Debt collection
'11': EUROPEAN UNION
'12': Electricity
'13': Fixed Constructions
'14': General tagging of new or cross-sectional technology
'15': Get Weather
'16': Human Necessities
'17': Mechanical Engineering; Lightning; Heating; Weapons; Blasting
'18': Money transfer, virtual currency, or money service
'19': Money transfers
'20': Mortgage
'21': Other financial service
'22': Payday loan
'23': Payday loan, title loan, or personal loan
'24': Performing Operations; Transporting
'25': Physics
'26': Play Music
'27': Prepaid card
'28': Rate Book
'29': Refund not showing up
'30': Search Creative Work
'31': Search Screening Event
'32': Student loan
'33': Textiles; Paper
'34': Vehicle loan or lease
'35': Virtual currency
'36': activate my card
'37': age limit
'38': agri-foodstuffs
'39': agriculture, forestry and fisheries
'40': alarm query
'41': alarm remove
'42': alarm set
'43': apple pay or google pay
'44': atm support
'45': audio volume down
'46': audio volume mute
'47': audio volume other
'48': audio volume up
'49': automatic top up
'50': balance not updated after bank transfer
'51': balance not updated after cheque or cash deposit
'52': beneficiary not allowed
'53': business and competition
'54': calendar query
'55': calendar remove
'56': calendar set
'57': cancel transfer
'58': card about to expire
'59': card acceptance
'60': card arrival
'61': card delivery estimate
'62': card linking
'63': card not working
'64': card payment fee charged
'65': card payment not recognised
'66': card payment wrong exchange rate
'67': card swallowed
'68': cash withdrawal charge
'69': cash withdrawal not recognised
'70': change pin
'71': compromised card
'72': contactless not working
'73': cooking query
'74': cooking recipe
'75': country support
'76': datetime convert
'77': datetime query
'78': declined card payment
'79': declined cash withdrawal
'80': declined transfer
'81': direct debit payment not recognised
'82': disposable card limits
'83': economics
'84': edit personal details
'85': education and communications
'86': email addcontact
'87': email query
'88': email querycontact
'89': email sendemail
'90': employment and working conditions
'91': energy
'92': environment
'93': exchange charge
'94': exchange rate
'95': exchange via app
'96': extra charge on statement
'97': failed transfer
'98': fiat currency support
'99': finance
'100': general affirm
'101': general commandstop
'102': general confirm
'103': general dontcare
'104': general explain
'105': general greet
'106': general joke
'107': general negate
'108': general praise
'109': general quirky
'110': general repeat
'111': geography
'112': get disposable virtual card
'113': get physical card
'114': getting spare card
'115': getting virtual card
'116': industry
'117': international organisations
'118': international relations
'119': iot cleaning
'120': iot coffee
'121': iot hue lightchange
'122': iot hue lightdim
'123': iot hue lightoff
'124': iot hue lighton
'125': iot hue lightup
'126': iot wemo off
'127': iot wemo on
'128': law
'129': lists createoradd
'130': lists query
'131': lists remove
'132': lost or stolen card
'133': lost or stolen phone
'134': music dislikeness
'135': music likeness
'136': music query
'137': music settings
'138': negative
'139': neutral
'140': news query
'141': order physical card
'142': passcode forgotten
'143': pending card payment
'144': pending cash withdrawal
'145': pending top up
'146': pending transfer
'147': pin blocked
'148': play audiobook
'149': play game
'150': play music
'151': play podcasts
'152': play radio
'153': politics
'154': positive
'155': production, technology and research
'156': qa currency
'157': qa definition
'158': qa factoid
'159': qa maths
'160': qa stock
'161': receiving money
'162': recommendation events
'163': recommendation locations
'164': recommendation movies
'165': request refund
'166': reverted card payment?
'167': science
'168': social post
'169': social query
'170': social questions
'171': supported cards and currencies
'172': takeaway order
'173': takeaway query
'174': terminate account
'175': top up by bank transfer charge
'176': top up by card charge
'177': top up by cash or cheque
'178': top up failed
'179': top up limits
'180': top up reverted
'181': topping up by card
'182': trade
'183': transaction charged twice
'184': transfer fee charged
'185': transfer into account
'186': transfer not received by recipient
'187': transfer timing
'188': transport
'189': transport query
'190': transport taxi
'191': transport ticket
'192': transport traffic
'193': unable to verify identity
'194': verify my identity
'195': verify source of funds
'196': verify top up
'197': virtual card not working
'198': visa or mastercard
'199': weather query
'200': why verify identity
'201': wrong amount of cash received
'202': wrong exchange rate for cash withdrawal
- name: dataset_name
dtype:
class_label:
names:
'0': amazon_polarity
'1': finance_sentiment
'2': yelp
'3': banking77
'4': snips
'5': nlu_evaluation
'6': multi_eurlex
'7': patent
'8': consumer_finance
splits:
- name: train
num_bytes: 3608196895
num_examples: 4996673
- name: test
num_bytes: 541174753
num_examples: 625911
download_size: 1744258165
dataset_size: 4149371648
- config_name: aspect-normalized-out-of-domain
features:
- name: text
dtype: string
- name: labels
sequence:
class_label:
names:
'0': Add To Playlist
'1': Bank account or service
'2': Book Restaurant
'3': Checking or savings account
'4': Chemistry; Metallurgy
'5': Consumer Loan
'6': Credit card
'7': Credit card or prepaid card
'8': Credit reporting
'9': Credit reporting, credit repair services, or other personal consumer
reports
'10': Debt collection
'11': EUROPEAN UNION
'12': Electricity
'13': Fixed Constructions
'14': General tagging of new or cross-sectional technology
'15': Get Weather
'16': Human Necessities
'17': Mechanical Engineering; Lightning; Heating; Weapons; Blasting
'18': Money transfer, virtual currency, or money service
'19': Money transfers
'20': Mortgage
'21': Other financial service
'22': Payday loan
'23': Payday loan, title loan, or personal loan
'24': Performing Operations; Transporting
'25': Physics
'26': Play Music
'27': Prepaid card
'28': Rate Book
'29': Refund not showing up
'30': Search Creative Work
'31': Search Screening Event
'32': Student loan
'33': Textiles; Paper
'34': Vehicle loan or lease
'35': Virtual currency
'36': activate my card
'37': age limit
'38': agri-foodstuffs
'39': agriculture, forestry and fisheries
'40': alarm query
'41': alarm remove
'42': alarm set
'43': apple pay or google pay
'44': atm support
'45': audio volume down
'46': audio volume mute
'47': audio volume other
'48': audio volume up
'49': automatic top up
'50': balance not updated after bank transfer
'51': balance not updated after cheque or cash deposit
'52': beneficiary not allowed
'53': business and competition
'54': calendar query
'55': calendar remove
'56': calendar set
'57': cancel transfer
'58': card about to expire
'59': card acceptance
'60': card arrival
'61': card delivery estimate
'62': card linking
'63': card not working
'64': card payment fee charged
'65': card payment not recognised
'66': card payment wrong exchange rate
'67': card swallowed
'68': cash withdrawal charge
'69': cash withdrawal not recognised
'70': change pin
'71': compromised card
'72': contactless not working
'73': cooking query
'74': cooking recipe
'75': country support
'76': datetime convert
'77': datetime query
'78': declined card payment
'79': declined cash withdrawal
'80': declined transfer
'81': direct debit payment not recognised
'82': disposable card limits
'83': economics
'84': edit personal details
'85': education and communications
'86': email addcontact
'87': email query
'88': email querycontact
'89': email sendemail
'90': employment and working conditions
'91': energy
'92': environment
'93': exchange charge
'94': exchange rate
'95': exchange via app
'96': extra charge on statement
'97': failed transfer
'98': fiat currency support
'99': finance
'100': general affirm
'101': general commandstop
'102': general confirm
'103': general dontcare
'104': general explain
'105': general greet
'106': general joke
'107': general negate
'108': general praise
'109': general quirky
'110': general repeat
'111': geography
'112': get disposable virtual card
'113': get physical card
'114': getting spare card
'115': getting virtual card
'116': industry
'117': international organisations
'118': international relations
'119': iot cleaning
'120': iot coffee
'121': iot hue lightchange
'122': iot hue lightdim
'123': iot hue lightoff
'124': iot hue lighton
'125': iot hue lightup
'126': iot wemo off
'127': iot wemo on
'128': law
'129': lists createoradd
'130': lists query
'131': lists remove
'132': lost or stolen card
'133': lost or stolen phone
'134': music dislikeness
'135': music likeness
'136': music query
'137': music settings
'138': negative
'139': neutral
'140': news query
'141': order physical card
'142': passcode forgotten
'143': pending card payment
'144': pending cash withdrawal
'145': pending top up
'146': pending transfer
'147': pin blocked
'148': play audiobook
'149': play game
'150': play music
'151': play podcasts
'152': play radio
'153': politics
'154': positive
'155': production, technology and research
'156': qa currency
'157': qa definition
'158': qa factoid
'159': qa maths
'160': qa stock
'161': receiving money
'162': recommendation events
'163': recommendation locations
'164': recommendation movies
'165': request refund
'166': reverted card payment?
'167': science
'168': social post
'169': social query
'170': social questions
'171': supported cards and currencies
'172': takeaway order
'173': takeaway query
'174': terminate account
'175': top up by bank transfer charge
'176': top up by card charge
'177': top up by cash or cheque
'178': top up failed
'179': top up limits
'180': top up reverted
'181': topping up by card
'182': trade
'183': transaction charged twice
'184': transfer fee charged
'185': transfer into account
'186': transfer not received by recipient
'187': transfer timing
'188': transport
'189': transport query
'190': transport taxi
'191': transport ticket
'192': transport traffic
'193': unable to verify identity
'194': verify my identity
'195': verify source of funds
'196': verify top up
'197': virtual card not working
'198': visa or mastercard
'199': weather query
'200': why verify identity
'201': wrong amount of cash received
'202': wrong exchange rate for cash withdrawal
- name: dataset_name
dtype:
class_label:
names:
'0': amazon_polarity
'1': finance_sentiment
'2': yelp
'3': banking77
'4': snips
'5': nlu_evaluation
'6': multi_eurlex
'7': patent
'8': consumer_finance
splits:
- name: train
num_bytes: 109566474
num_examples: 119167
- name: validation
num_bytes: 12432497
num_examples: 13263
- name: test
num_bytes: 541174753
num_examples: 625911
download_size: 1744258165
dataset_size: 663173724
---
# Universal Text Classification Dataset (UTCD)
## Load dataset
```python
from datasets import load_dataset
dataset = load_dataset('claritylab/utcd', name='in-domain')
```
## Description
UTCD is a curated compilation of 18 datasets revised for Zero-shot Text Classification spanning 3 aspect categories of Sentiment, Intent/Dialogue, and Topic classification. UTCD focuses on the task of zero-shot text classification where the candidate labels are descriptive of the text being classified. TUTCD consists of ~ 6M/800K train/test examples.
UTCD was introduced in the Findings of ACL'23 Paper **Label Agnostic Pre-training for Zero-shot Text Classification** by ***Christopher Clarke, Yuzhao Heng, Yiping Kang, Krisztian Flautner, Lingjia Tang and Jason Mars***. [Project Homepage](https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master).
UTCD Datasets & Principles:
In order to make NLP models more broadly useful, zero-shot techniques need to be capable of label, domain \& aspect transfer. As such, in the construction of UTCD we enforce the following principles:
- **Textual labels**: In UTCD, we mandate the use of textual labels. While numerical label values are often used in classification tasks, descriptive textual labels such as those present in the datasets across UTCD enable the development of techniques that can leverage the class name which is instrumental in providing zero-shot support. As such, for each of the compiled datasets, labels are standardized such that the labels are descriptive of the text in natural language.
- **Diverse domains and Sequence lengths**: In addition to broad coverage of aspects, UTCD compiles diverse data across several domains such as Banking, Finance, Legal, etc each comprising varied length sequences (long and short). The datasets are listed above.
- Sentiment
- GoEmotions introduced in [GoEmotions: A Dataset of Fine-Grained Emotions](https://arxiv.org/pdf/2005.00547v2.pdf)
- TweetEval introduced in [TWEETEVAL: Unified Benchmark and Comparative Evaluation for Tweet Classification](https://arxiv.org/pdf/2010.12421v2.pdf) (Sentiment subset)
- Emotion introduced in [CARER: Contextualized Affect Representations for Emotion Recognition](https://aclanthology.org/D18-1404.pdf)
- Amazon Polarity introduced in [Character-level Convolutional Networks for Text Classification](https://arxiv.org/pdf/1509.01626.pdf)
- Finance Phrasebank introduced in [Good debt or bad debt: Detecting semantic orientations in economic texts](https://arxiv.org/pdf/1307.5336.pdf)
- Yelp introduced in [Character-level Convolutional Networks for Text Classification](https://arxiv.org/pdf/1509.01626.pdf)
- Intent/Dialogue
- Schema-Guided Dialogue introduced in [Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset](https://arxiv.org/pdf/1909.05855v2.pdf)
- Clinc-150 introduced in [An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction](https://arxiv.org/pdf/1909.02027v1.pdf)
- SLURP SLU introduced in [SLURP: A Spoken Language Understanding Resource Package](https://arxiv.org/pdf/2011.13205.pdf)
- Banking77 introduced in [Efficient Intent Detection with Dual Sentence Encoders](https://arxiv.org/abs/2003.04807](https://arxiv.org/pdf/2003.04807.pdf)
- Snips introduced in [Snips Voice Platform: an embedded Spoken Language Understanding system for private-by-design voice interfaces](https://arxiv.org/pdf/1805.10190.pdf)
- NLU Evaluation introduced in [Benchmarking Natural Language Understanding Services for building Conversational Agents](https://arxiv.org/pdf/1903.05566.pdf)
- Topic
- AG News introduced in [Character-level Convolutional Networks for Text Classification](https://arxiv.org/pdf/1509.01626.pdf)
- DBpedia 14 introduced in [DBpedia: A Nucleus for a Web of Open Data](https://link.springer.com/chapter/10.1007/978-3-540-76298-0_52)
- Yahoo Answer Topics introduced in [Character-level Convolutional Networks for Text Classification](https://arxiv.org/pdf/1509.01626.pdf)
- MultiEurlex introduced in [MultiEURLEX -- A multi-lingual and multi-label legal document classification dataset for zero-shot cross-lingual transfer](https://aclanthology.org/2021.emnlp-main.559v2.pdf)
- BigPatent introduced in [BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization](https://aclanthology.org/P19-1212.pdf)
- Consumer Finance introduced in [Consumer Complaint Database](https://www.consumerfinance.gov/data-research/consumer-complaints/)
## Structure
### Data Samples
Each dataset sample contains the text, the label encoded as an integer, and the dataset name encoded as an integer.
```python
{
'text': "My favourite food is anything I didn't have to cook myself.",
'labels': [215],
'dataset_name': 0
}
```
### Datasets Contained
The UTCD dataset contains 18 datasets, 9 `in-domain`, 9 `out-of-domain`, spanning 3 aspects: `sentiment`, `intent` and `topic`.
Below are statistics on the datasets.
**In-Domain Datasets**
| Dataset | Aspect | #Samples in Train/Test | #labels | average #token in text in Train/Test |
| ---------- | --------- | ---------------------- | ------- | ------------------------------------ |
| GoEmotions | sentiment | 43K/5.4K | 28 | 12/12 |
| TweetEval | sentiment | 45K/12K | 3 | 19/14 |
| Emotion | sentiment | 16K/2K | 6 | 17/17 |
| SGD | intent | 16K/4.2K | 26 | 8/9 |
| Clinc-150 | intent | 15K/4.5K | 150 | 8/8 |
| SLURP | intent | 12K/2.6K | 75 | 7/7 |
| AG News | topic | 120K7.6K | 4 | 38/37 |
| DBpedia | topic | 560K/70K | 14 | 45/45 |
| Yahoo | topic | 1.4M/60K | 10 | 10/10 |
**Out-of-Domain Datasets**
| Dataset | Aspect | #Samples in Train/Test | #labels | average #token in text |
| --------------------- | --------- | ---------------------- | ------- | ---------------------- |
| Amazon Polarity | sentiment | 3.6M/400K | 2 | 71/71 |
| Financial Phrase Bank | sentiment | 1.8K/453 | 3 | 19/19 |
| Yelp | sentiment | 650K/50K | 3 | 128/128 |
| Banking77 | intent | 10K/3.1K | 77 | 11/10 |
| SNIPS | intent | 14K/697 | 7 | 8/8 |
| NLU Eval | intent | 21K/5.2K | 68 | 7/7 |
| MultiEURLEX | topic | 55K/5K | 21 | 1198/1853 |
| Big Patent | topic | 25K/5K | 9 | 2872/2892 |
| Consumer Finance | topic | 630K/160K | 18 | 190/189 |
### Configurations
The `in-domain` and `out-of-domain` configurations has 2 splits: `train` and `test`.
The aspect-normalized configurations (`aspect-normalized-in-domain`, `aspect-normalized-out-of-domain`) has 3 splits: `train`, `validation` and `test`.
Below are statistics on the configuration splits.
**In-Domain Configuration**
| Split | #samples |
| ----- | --------- |
| Train | 2,192,703 |
| Test | 168,365 |
**Out-of-Domain Configuration**
| Split | #samples |
| ----- | --------- |
| Train | 4,996,673 |
| Test | 625,911 |
**Aspect-Normalized In-Domain Configuration**
| Split | #samples |
| ---------- | -------- |
| Train | 115,127 |
| Validation | 12,806 |
| Test | 168,365 |
**Aspect-Normalized Out-of-Domain Configuration**
| Split | #samples |
| ---------- | -------- |
| Train | 119,167 |
| Validation | 13,263 |
| Test | 625,911 |
|