Datasets:

Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 2,321 Bytes
1b3ed62
 
 
8c6e678
 
124b64a
1b3ed62
 
 
8c6e678
1b3ed62
 
8c6e678
1b3ed62
8c6e678
 
1b3ed62
 
 
 
 
 
 
124b64a
 
 
 
1b3ed62
c0e05b7
 
 
 
124b64a
c0e05b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
dataset_info:
  features:
  - name: x
    sequence: float64
  - name: 'y'
    dtype: int64
  splits:
  - name: train
    num_bytes: 1328000
    num_examples: 4000
  - name: test
    num_bytes: 332000
    num_examples: 1000
  download_size: 2009200
  dataset_size: 1660000
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
license: apache-2.0
pretty_name: The MNIST-1D Dataset
size_categories:
- 1K<n<10K
---
> [!NOTE]
> The following is taken from the authors' GitHub repository: https://github.com/greydanus/mnist1d
> 
# The MNIST-1D Dataset

Most machine learning models get around the same ~99% test accuracy on MNIST. Our dataset, MNIST-1D, is 100x smaller (default sample size: 4000+1000; dimensionality: 40) and does a better job of separating between models with/without nonlinearity and models with/without spatial inductive biases.

## Dataset Creation

This version of the dataset was created by using the pickle file provided by the dataset authors in the original repository: [mnist1d_data.pkl](https://github.com/greydanus/mnist1d/blob/master/mnist1d_data.pkl) and was generated like follows:

```python
import sys ; sys.path.append('..')  # useful if you're running locally
import mnist1d
from datasets import Dataset, DatasetDict

# Load the data using the mnist1d library
args = mnist1d.get_dataset_args()
data = mnist1d.get_dataset(args, path='./mnist1d_data.pkl', download=True) # This is the default setting

# Load the data into a Hugging Face dataset and push it to the hub
train = Dataset.from_dict({"x": data["x"], "y":data["y"]})
test = Dataset.from_dict({"x": data["x_test"], "y":data["y_test"]})
DatasetDict({"train":train, "test":test}).push_to_hub("christopher/mnist1d")
```

## Dataset Usage

using the `datasets` library:

```python
from datasets import load_dataset
train = load_dataset("christopher/mnist1d", split="train")
test = load_dataset("christopher/mnist1d", split="test")
all = load_dataset("christopher/mnist1d", split="train+test")
```


## Citation

```json
@inproceedings{greydanus2024scaling,
  title={Scaling down deep learning with {MNIST}-{1D}},
  author={Greydanus, Sam and Kobak, Dmitry},
  booktitle={Proceedings of the 41st International Conference on Machine Learning},
  year={2024}
}
```