Datasets:

Modalities:
Tabular
ArXiv:
Libraries:
Datasets
License:
File size: 7,684 Bytes
8f5e012
 
 
e6a3ac4
 
8f5e012
30797c9
e6a3ac4
8f5e012
 
 
 
 
5679ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f5e012
 
 
 
5679ebe
 
 
8f5e012
 
10344b3
9467ecf
 
10344b3
8f5e012
 
10344b3
8f5e012
 
 
 
10344b3
8f5e012
e6a3ac4
 
 
 
 
 
10344b3
 
 
 
e6a3ac4
 
 
 
 
 
10344b3
8f5e012
 
10344b3
 
8f5e012
e6a3ac4
 
 
 
8f5e012
e6a3ac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f5e012
e6a3ac4
 
 
 
 
ad96d5b
8f5e012
 
 
 
10344b3
30797c9
e6a3ac4
9467ecf
8f5e012
 
 
 
 
 
 
 
 
 
 
 
 
 
e6a3ac4
 
 
 
 
 
8f5e012
30797c9
e6a3ac4
8f5e012
e6a3ac4
8f5e012
 
30797c9
8f5e012
e6a3ac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""Cartoonset-10k Data Set"""


from io import BytesIO
from typing import Optional

import tarfile
import pandas as pd


import datasets


_CITATION = r"""
@article{DBLP:journals/corr/abs-1711-05139,
  author    = {Amelie Royer and
               Konstantinos Bousmalis and
               Stephan Gouws and
               Fred Bertsch and
               Inbar Mosseri and
               Forrester Cole and
               Kevin Murphy},
  title     = {{XGAN:} Unsupervised Image-to-Image Translation for many-to-many Mappings},
  journal   = {CoRR},
  volume    = {abs/1711.05139},
  year      = {2017},
  url       = {http://arxiv.org/abs/1711.05139},
  eprinttype = {arXiv},
  eprint    = {1711.05139},
  timestamp = {Mon, 13 Aug 2018 16:47:38 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1711-05139.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_DESCRIPTION = """\
Cartoon Set is a collection of random, 2D cartoon avatar images. The cartoons vary in 10 artwork 
categories, 4 color categories, and 4 proportion categories, with a total of ~1013 possible 
combinations. We provide sets of 10k and 100k randomly chosen cartoons and labeled attributes. 
"""

_DATA_URLS = {
    "10k": "https://huggingface.co/datasets/cgarciae/cartoonset/resolve/1.0.0/data/cartoonset10k.tgz",
    "100k": "https://huggingface.co/datasets/cgarciae/cartoonset/resolve/1.0.0/data/cartoonset100k.tgz",
}


class Cartoonset(datasets.GeneratorBasedBuilder):
    """Cartoonset-10k Data Set"""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="10k",
            version=datasets.Version("1.0.0", ""),
            description="Loads the Cartoonset-10k Data Set (images only).",
        ),
        datasets.BuilderConfig(
            name="10k+features",
            version=datasets.Version("1.0.0", ""),
            description="Loads the Cartoonset-10k Data Set (images and attributes).",
        ),
        datasets.BuilderConfig(
            name="100k",
            version=datasets.Version("1.0.0", ""),
            description="Loads the Cartoonset-100k Data Set (images only).",
        ),
        datasets.BuilderConfig(
            name="100k+features",
            version=datasets.Version("1.0.0", ""),
            description="Loads the Cartoonset-100k Data Set (images and attributes).",
        ),
    ]

    DEFAULT_CONFIG_NAME = "10k"

    def _info(self):
        features = {"img_bytes": datasets.Value("binary")}

        if self.config.name.endswith("+features"):
            features.update(
                {
                    "eye_angle": datasets.Value("int32"),
                    "eye_angle_num_categories": datasets.Value("int32"),
                    "eye_lashes": datasets.Value("int32"),
                    "eye_lashes_num_categories": datasets.Value("int32"),
                    "eye_lid": datasets.Value("int32"),
                    "eye_lid_num_categories": datasets.Value("int32"),
                    "chin_length": datasets.Value("int32"),
                    "chin_length_num_categories": datasets.Value("int32"),
                    "eyebrow_weight": datasets.Value("int32"),
                    "eyebrow_weight_num_categories": datasets.Value("int32"),
                    "eyebrow_shape": datasets.Value("int32"),
                    "eyebrow_shape_num_categories": datasets.Value("int32"),
                    "eyebrow_thickness": datasets.Value("int32"),
                    "eyebrow_thickness_num_categories": datasets.Value("int32"),
                    "face_shape": datasets.Value("int32"),
                    "face_shape_num_categories": datasets.Value("int32"),
                    "facial_hair": datasets.Value("int32"),
                    "facial_hair_num_categories": datasets.Value("int32"),
                    "hair": datasets.Value("int32"),
                    "hair_num_categories": datasets.Value("int32"),
                    "eye_color": datasets.Value("int32"),
                    "eye_color_num_categories": datasets.Value("int32"),
                    "face_color": datasets.Value("int32"),
                    "face_color_num_categories": datasets.Value("int32"),
                    "hair_color": datasets.Value("int32"),
                    "hair_color_num_categories": datasets.Value("int32"),
                    "glasses": datasets.Value("int32"),
                    "glasses_num_categories": datasets.Value("int32"),
                    "glasses_color": datasets.Value("int32"),
                    "glasses_color_num_categories": datasets.Value("int32"),
                    "eye_slant": datasets.Value("int32"),
                    "eye_slant_num_categories": datasets.Value("int32"),
                    "eyebrow_width": datasets.Value("int32"),
                    "eyebrow_width_num_categories": datasets.Value("int32"),
                    "eye_eyebrow_distance": datasets.Value("int32"),
                    "eye_eyebrow_distance_num_categories": datasets.Value("int32"),
                }
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
            supervised_keys=("img_bytes",),
            homepage="https://www.cs.toronto.edu/~kriz/cifar.html",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):

        url = _DATA_URLS[self.config.name.replace("+features", "")]
        archive = dl_manager.download(url)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": dl_manager.iter_archive(archive),
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, files, split):
        """This function returns the examples in the raw (text) form."""

        if self.config.name.endswith("+features"):
            return self._generate_examples_with_features(files, split)
        else:
            return self._generate_examples_without_features(files, split)

    def _generate_examples_without_features(self, files, split):
        path: str
        file_obj: tarfile.ExFileObject
        root: str
        for path, file_obj in files:
            root = path[:-4]

            if path.endswith(".png"):
                image = file_obj.read()

                yield root, {"img_bytes": image}

    def _generate_examples_with_features(self, files, split):
        path: str
        file_obj: tarfile.ExFileObject
        outputs = {}
        root: Optional[str] = None
        for path, file_obj in files:
            root = path[:-4]

            if root not in outputs:
                outputs[root] = {}

            current_output = outputs[root]

            if path.endswith(".png"):
                image = file_obj.read()

                current_output["img_bytes"] = image
            else:
                df = pd.read_csv(
                    BytesIO(file_obj.read()),
                    header=None,
                    names=["feature", "value", "num_categories"],
                )

                for index, row in df.iterrows():
                    current_output[row.feature] = row.value
                    current_output[f"{row.feature}_num_categories"] = row.num_categories

            if "img_bytes" in current_output and len(current_output) > 1:
                yield root, current_output
                del outputs[root]
                root = None

        if len(outputs) > 0:
            raise ValueError(
                f"Unable to extract the following samples: {list(outputs)}"
            )