Datasets:

Modalities:
Tabular
ArXiv:
Libraries:
Datasets
License:
File size: 3,237 Bytes
8f5e012
 
 
 
 
 
 
30797c9
8f5e012
 
 
 
 
 
5679ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f5e012
 
 
 
5679ebe
 
 
8f5e012
 
10344b3
9467ecf
 
10344b3
8f5e012
 
10344b3
8f5e012
 
 
 
10344b3
8f5e012
10344b3
 
 
 
 
5679ebe
10344b3
8f5e012
 
10344b3
 
8f5e012
 
 
 
 
30797c9
 
8f5e012
 
ad96d5b
8f5e012
 
 
 
10344b3
30797c9
f105ee9
9467ecf
8f5e012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30797c9
8f5e012
 
 
30797c9
8f5e012
 
30797c9
8f5e012
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""Cartoonset-10k Data Set"""


import pickle

import numpy as np
import PIL.Image
import tarfile


import datasets
from datasets.tasks import ImageClassification


_CITATION = r"""
@article{DBLP:journals/corr/abs-1711-05139,
  author    = {Amelie Royer and
               Konstantinos Bousmalis and
               Stephan Gouws and
               Fred Bertsch and
               Inbar Mosseri and
               Forrester Cole and
               Kevin Murphy},
  title     = {{XGAN:} Unsupervised Image-to-Image Translation for many-to-many Mappings},
  journal   = {CoRR},
  volume    = {abs/1711.05139},
  year      = {2017},
  url       = {http://arxiv.org/abs/1711.05139},
  eprinttype = {arXiv},
  eprint    = {1711.05139},
  timestamp = {Mon, 13 Aug 2018 16:47:38 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1711-05139.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_DESCRIPTION = """\
Cartoon Set is a collection of random, 2D cartoon avatar images. The cartoons vary in 10 artwork 
categories, 4 color categories, and 4 proportion categories, with a total of ~1013 possible 
combinations. We provide sets of 10k and 100k randomly chosen cartoons and labeled attributes. 
"""

_DATA_URLS = {
    "10k": "https://huggingface.co/datasets/cgarciae/cartoonset/resolve/1.0.0/data/cartoonset10k.tgz",
    "100k": "https://huggingface.co/datasets/cgarciae/cartoonset/resolve/1.0.0/data/cartoonset100k.tgz",
}


class Cartoonset(datasets.GeneratorBasedBuilder):
    """Cartoonset-10k Data Set"""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="10k",
            version=datasets.Version("1.0.0", ""),
            description="Loads the Cartoonset-10k Data Set",
        ),
        datasets.BuilderConfig(
            name="100k",
            version=datasets.Version("1.0.0", ""),
            description="Loads the Cartoonset-100k Data Set",
        ),
    ]

    DEFAULT_CONFIG_NAME = "10k"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    # "img": datasets.Image(),
                    "img_bytes": datasets.Value("binary"),
                }
            ),
            supervised_keys=("img_bytes",),
            homepage="https://www.cs.toronto.edu/~kriz/cifar.html",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):

        url = _DATA_URLS[self.config.name]
        archive = dl_manager.download(url)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": dl_manager.iter_archive(archive),
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, files, split):
        """This function returns the examples in the raw (text) form."""

        path: str
        file_obj: tarfile.ExFileObject
        for path, file_obj in files:

            if path.endswith(".png"):
                image = file_obj.read()

                yield path, {
                    "img_bytes": image,
                }