File size: 3,668 Bytes
c112a22
 
 
 
 
 
 
a69635c
 
 
 
8d51f8c
 
c112a22
 
 
 
a69635c
 
 
 
 
c112a22
 
 
 
a69635c
 
 
 
 
 
 
 
 
 
 
8d51f8c
 
c112a22
 
 
 
a69635c
 
 
 
 
c112a22
 
 
 
a69635c
 
 
 
 
8d51f8c
 
c112a22
 
 
 
a69635c
 
 
 
 
c112a22
 
 
 
a69635c
 
 
8d51f8c
 
c112a22
 
 
 
a69635c
 
 
 
8d51f8c
 
c112a22
 
 
 
a69635c
 
 
c112a22
 
 
 
a69635c
 
 
8d51f8c
 
c112a22
 
 
 
a69635c
 
 
 
8d51f8c
 
c112a22
 
 
 
a69635c
 
c112a22
 
 
 
a69635c
 
c112a22
 
 
 
a69635c
 
c112a22
 
 
 
8d51f8c
c112a22
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
dataset_info:
  features:
  - name: status of existing checking account
    dtype:
      class_label:
        names:
          '0': < 0 DM
          '1': 0 <= ... < 200 DM
          '2': '>= 200 DM / salary assignments for at least 1 year'
          '3': no checking account
  - name: duration in month
    dtype: float32
  - name: credit history
    dtype:
      class_label:
        names:
          '0': no credits taken / all credits paid back duly
          '1': all credits at this bank paid back duly
          '2': existing credits paid back duly till now
          '3': delay in paying off in the past
          '4': critical account / other credits existing (not at this bank)
  - name: purpose
    dtype:
      class_label:
        names:
          '0': car (new)
          '1': car (used)
          '2': furniture/equipment
          '3': radio/television
          '4': domestic appliances
          '5': repairs
          '6': education
          '7': vacation
          '8': retraining
          '9': business
          '10': others
  - name: credit amount
    dtype: float32
  - name: savings account/bonds
    dtype:
      class_label:
        names:
          '0': < 100 DM
          '1': 100 <= ... < 500 DM
          '2': 500 <= ... < 1000 DM
          '3': '>= 1000 DM'
          '4': unknown / no savings account
  - name: present employment since
    dtype:
      class_label:
        names:
          '0': unemployed
          '1': < 1 year
          '2': 1 <= ... < 4 years
          '3': 4 <= ... < 7 years
          '4': '>= 7 years'
  - name: installment rate in percentage of disposable income
    dtype: float32
  - name: personal status and sex
    dtype:
      class_label:
        names:
          '0': 'male: divorced/separated'
          '1': 'female: divorced/separated/married'
          '2': 'male: single'
          '3': 'male: married/widowed'
          '4': 'female: single'
  - name: other debtors / guarantors
    dtype:
      class_label:
        names:
          '0': none
          '1': co-applicant
          '2': guarantor
  - name: present residence since
    dtype: float32
  - name: property
    dtype:
      class_label:
        names:
          '0': real estate
          '1': building society savings agreement / life insurance
          '2': car or other, not in attribute 6
          '3': unknown / no property
  - name: age in years
    dtype: float32
  - name: other installment plans
    dtype:
      class_label:
        names:
          '0': bank
          '1': stores
          '2': none
  - name: housing
    dtype:
      class_label:
        names:
          '0': rent
          '1': own
          '2': for free
  - name: number of existing credits at this bank
    dtype: float32
  - name: job
    dtype:
      class_label:
        names:
          '0': unemployed / unskilled - non-resident
          '1': unskilled - resident
          '2': skilled employee / official
          '3': management / self-employed / highly qualified employee / officer
  - name: number of people being liable to provide maintenance for
    dtype: float32
  - name: telephone
    dtype:
      class_label:
        names:
          '0': none
          '1': yes, registered under the customer’s name
  - name: foreign worker
    dtype:
      class_label:
        names:
          '0': 'yes'
          '1': 'no'
  - name: class
    dtype:
      class_label:
        names:
          '0': good
          '1': bad
  splits:
  - name: train
    num_bytes: 140000
    num_examples: 1000
  download_size: 27173
  dataset_size: 140000
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---