File size: 5,283 Bytes
49c80ad c90474f 49c80ad ec0eca8 49c80ad ec0eca8 49c80ad 12ab0f8 49c80ad ec0eca8 49c80ad ec0eca8 49c80ad ec0eca8 49c80ad c90474f ec0eca8 c90474f 49c80ad ec0eca8 49c80ad ec0eca8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import json
import os
import datasets
from datasets.tasks import TextClassification
_CITATION = None
_DESCRIPTION = """
MediaSum dataset for summarization.
From paper: "MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization" by C. Zhu et al."
"""
_CITATION = """\
@article{zhu2021mediasum,
title={MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization},
author={Zhu, Chenguang and Liu, Yang and Mei, Jie and Zeng, Michael},
journal={arXiv preprint arXiv:2103.06410},
year={2021}
}
"""
_ABSTRACT = "summary"
_ARTICLE = "document"
class MediaSumSummarizationConfig(datasets.BuilderConfig):
"""BuilderConfig for MediaSumSummarization."""
def __init__(self, **kwargs):
"""BuilderConfig for MediaSumSummarization.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(MediaSumSummarizationConfig, self).__init__(**kwargs)
class MediaSumSummarizationDataset(datasets.GeneratorBasedBuilder):
"""MediaSumSummarization Dataset."""
_TRAIN_FILE = "train_data.zip"
_VAL_FILE = "val_data.zip"
_TEST_FILE = "test_data.zip"
BUILDER_CONFIGS = [
MediaSumSummarizationConfig(
name="newline",
version=datasets.Version("1.0.0"),
description="MediaSum dataset for summarization, concat sections",
),
MediaSumSummarizationConfig(
name="roberta",
version=datasets.Version("1.0.0"),
description="MediaSum dataset for summarization, document",
),
MediaSumSummarizationConfig(
name="bert",
version=datasets.Version("1.0.0"),
description="MediaSum dataset for summarization, document",
),
MediaSumSummarizationConfig(
name="list",
version=datasets.Version("1.0.0"),
description="MediaSum dataset for summarization, document",
),
MediaSumSummarizationConfig(
name="newline_prepended",
version=datasets.Version("1.0.0"),
description="MediaSum dataset for summarization, concat sections",
),
MediaSumSummarizationConfig(
name="roberta_prepended",
version=datasets.Version("1.0.0"),
description="MediaSum dataset for summarization, document",
),
MediaSumSummarizationConfig(
name="bert_prepended",
version=datasets.Version("1.0.0"),
description="MediaSum dataset for summarization, document",
),
MediaSumSummarizationConfig(
name="list_prepended",
version=datasets.Version("1.0.0"),
description="MediaSum dataset for summarization, document",
),
]
DEFAULT_CONFIG_NAME = "roberta_prepended"
def _info(self):
# Should return a datasets.DatasetInfo object
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
_ARTICLE: datasets.Sequence(datasets.Value("string")) if self.config.name == "list" else datasets.Value("string"),
_ABSTRACT: datasets.Value("string"),
#"id": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://github.com/zcgzcgzcg1/MediaSum",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_path = os.path.join(dl_manager.download_and_extract(self._TRAIN_FILE), "train_data.txt")
val_path = os.path.join(dl_manager.download_and_extract(self._VAL_FILE), "val_data.txt")
test_path = os.path.join(dl_manager.download_and_extract(self._TEST_FILE), "test_data.txt")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}
),
]
def _generate_examples(self, filepath):
"""Generate MediaSumSummarization examples."""
if "newline" in self.config.name:
join_ = "\n"
elif "roberta" in self.config.name:
join_ = "</s>"
elif "bert" in self.config.name:
join_ = " [SEP] "
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
"""
'summary': str,
'document': List[str],
"""
documents = data["utt"]
if "_prepended" in self.config.name:
names = data["speaker"]
documents = [name + ": " + document for name, document in zip(names, documents)]
if self.config.name != "list":
documents = join_.join(documents)
summary = data["summary"]
yield id_, {"document": documents, "summary": summary}
|