Datasets:
File size: 4,872 Bytes
b826199 0a9bdc2 bec23fc b826199 0a9bdc2 b826199 0a9bdc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import json
import datasets
from dataclasses import dataclass
_CITATION = '''
@article{mrtydi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
'''
languages = [
'arabic',
'bengali',
'english',
'indonesian',
'finnish',
'korean',
'russian',
'swahili',
'telugu',
'thai',
'japanese',
'combined',
]
_DESCRIPTION = 'dataset load script for Mr. TyDi'
_DATASET_URLS = {
lang: {
'train': f'https://huggingface.co/datasets/castorini/mr-tydi/resolve/main/mrtydi-v1.1-{lang}/train.jsonl.gz',
'dev': f'https://huggingface.co/datasets/castorini/mr-tydi/resolve/main/mrtydi-v1.1-{lang}/dev.jsonl.gz',
'test': f'https://huggingface.co/datasets/castorini/mr-tydi/resolve/main/mrtydi-v1.1-{lang}/test.jsonl.gz',
} for lang in languages
}
_DATASET_URLS['combined'] = {
'train': "https://huggingface.co/datasets/castorini/mr-tydi/resolve/main/mrtydi-v1.1-combined/train.jsonl.gz"
}
class MrTyDi(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [datasets.BuilderConfig(
version=datasets.Version('1.1.0'),
name=lang, description=f'Mr TyDi dataset in language {lang}.'
) for lang in languages
]
def _info(self):
features = datasets.Features({
'query_id': datasets.Value('string'),
'query': datasets.Value('string'),
'positive_passages': [{
'docid': datasets.Value('string'),
'text': datasets.Value('string'), 'title': datasets.Value('string')
}],
'negative_passages': [{
'docid': datasets.Value('string'),
'text': datasets.Value('string'), 'title': datasets.Value('string'),
}],
})
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
# Homepage of the dataset for documentation
homepage='https://github.com/castorini/mr.tydi',
# License for the dataset if available
license='',
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
lang = self.config.name
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang])
if lang != "combined":
splits = [
datasets.SplitGenerator(
name='train',
gen_kwargs={
'filepath': downloaded_files['train'],
},
),
datasets.SplitGenerator(
name='dev',
gen_kwargs={
'filepath': downloaded_files['dev'],
},
),
datasets.SplitGenerator(
name='test',
gen_kwargs={
'filepath': downloaded_files['test'],
},
),
]
else:
splits = [
datasets.SplitGenerator(
name='train',
gen_kwargs={
'filepath': downloaded_files['train'],
},
),
]
return splits
def _generate_examples(self, filepath):
lang = self.config.name
with open(filepath, encoding="utf-8") as f:
for i, line in enumerate(f):
data = json.loads(line)
qid = data['query_id'] if lang != 'combined' else f'fake-{i}'
for feature in ['negative_passages', 'positive_passages']:
if data.get(feature) is None:
data[feature] = []
yield qid, data
|