File size: 62,738 Bytes
d377668
 
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
 
43de084
 
 
 
d377668
43de084
 
 
 
 
 
d377668
 
43de084
 
 
 
 
d377668
 
 
 
 
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
 
 
43de084
d377668
 
43de084
 
 
 
 
 
 
d377668
43de084
 
 
 
d377668
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
d377668
 
43de084
 
 
 
 
 
 
 
 
 
 
d377668
 
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
 
 
 
 
 
d377668
 
43de084
 
d377668
 
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
d377668
43de084
 
 
 
 
 
 
 
 
d377668
 
43de084
 
 
d377668
43de084
 
d377668
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
d377668
43de084
 
 
 
d377668
43de084
d377668
 
43de084
 
d377668
 
43de084
 
 
 
d377668
43de084
 
 
d377668
43de084
 
d377668
 
 
 
43de084
 
 
d377668
43de084
d377668
43de084
d377668
43de084
 
 
 
 
d377668
43de084
 
 
d377668
43de084
d377668
 
43de084
 
 
 
 
 
7c23833
43de084
 
 
d377668
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
 
d377668
43de084
 
 
 
 
d377668
43de084
 
 
d377668
43de084
 
 
d377668
 
 
43de084
 
 
 
 
 
 
 
 
d377668
 
43de084
 
 
 
 
d377668
43de084
 
 
 
d377668
 
43de084
 
 
d377668
43de084
d377668
43de084
d377668
43de084
 
 
 
 
d377668
43de084
 
d377668
43de084
 
d377668
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
d377668
43de084
 
 
 
 
 
 
 
 
 
d377668
43de084
 
d377668
 
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c23833
43de084
 
 
 
d377668
43de084
 
 
 
d377668
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
 
 
d377668
43de084
 
 
d377668
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
d377668
 
43de084
 
d377668
 
43de084
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
 
 
d377668
 
 
 
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
 
 
 
 
43de084
d377668
 
 
43de084
d377668
 
43de084
 
 
 
 
 
d377668
43de084
 
 
 
 
 
d377668
 
43de084
 
 
d377668
43de084
 
d377668
43de084
 
 
 
 
 
 
d377668
 
43de084
 
 
 
 
 
 
 
 
 
 
 
d377668
 
 
 
 
 
 
 
 
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
d377668
 
 
 
 
 
 
 
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
 
 
 
d377668
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
 
 
 
 
d377668
43de084
d377668
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
 
 
 
d377668
43de084
 
 
 
 
 
d377668
 
43de084
 
 
 
 
 
 
 
 
d377668
43de084
 
 
d377668
43de084
 
d377668
 
43de084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d377668
 
 
 
43de084
 
d377668
 
43de084
 
 
d377668
 
 
43de084
 
 
d377668
43de084
d377668
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
software,repo_name,readme_url,content,plan,steps,optional_steps,extra_info_optional
vcr-video-representation-for-contextual,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/oronnir/VCR/main/README.md,,,,,
ensuring-trustworthy-and-ethical-behaviour-in,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/AAAI-DISIM-UnivAQ/DALI/master/README.md,"## Installation

**OS X & Linux:**
1.  To download and install SICStus Prolog (it is needed), follow the instructions at https://sicstus.sics.se/download4.html.
2.  Then, you can download DALI and test it by running an example DALI MAS:
```sh
git clone https://github.com/AAAI-DISIM-UnivAQ/DALI.git
cd DALI/Examples/advanced
bash startmas.sh
```
     You will see different windows opening:
*      Prolog LINDA server (active_server_wi.pl)
*      Prolog FIPA client (active_user_wi.pl) 
*      1 instance of DALI metaintepreter for each agent (active_dali_wi.pl)

**Windows:**
1.  To download and install SICStus Prolog (it is needed), follow the instructions at https://sicstus.sics.se/download4.html.
2.  Then, you can download DALI from https://github.com/AAAI-DISIM-UnivAQ/DALI.git.
3.  Unzip the repository, go to the folder ""DALI/Examples/basic"", and test if DALI works by duble clicking ""startmas.bat"" file (this will launch an example DALI MAS). \
\
     You will see different windows opening:
*      Prolog LINDA server (active_server_wi.pl)
*      Prolog FIPA client (active_user_wi.pl) 
*      1 instance of DALI metaintepreter for each agent (active_dali_wi.pl)","binary, source","[plan binary]>>step1. follow the instructions at https://sicstus.sics.se/download4.html.
[plan source]>>step 2. download DALI. step3. test it by running an example DALI MAS:
```sh
git clone https://github.com/AAAI-DISIM-UnivAQ/DALI.git
cd DALI/Examples/advanced
bash startmas.sh
```","**Windows:**
1.  To download and install SICStus Prolog (it is needed), follow the instructions at https://sicstus.sics.se/download4.html.
2.  Then, you can download DALI from https://github.com/AAAI-DISIM-UnivAQ/DALI.git.
3.  Unzip the repository, go to the folder ""DALI/Examples/basic"", and test if DALI works by duble clicking ""startmas.bat"" file (this will launch an example DALI MAS). \","You will see different windows opening:
Prolog LINDA server (active_server_wi.pl)
Prolog FIPA client (active_user_wi.pl) 
1 instance of DALI metaintepreter for each agent (active_dali_wi.pl)"
synthesizing-sentiment-controlled-feedback,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/MIntelligence-Group/CMFeed/main/README.md,,,,,
only-the-curve-shape-matters-training,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/cfeng783/GTT/main/README.md,"## Getting Started

#### Install dependencies (with python 3.10) 

```shell
pip install -r requirements.txt
```",source,[plan source]>> [INCOMPLETE] step1. Install dependencies with ```pip install -r requirements.txt```,,
from-uncertainty-to-precision-enhancing,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/fer-agathe/calibration_binary_classifier/main/README.md,,,,,
stochastic-gradient-flow-dynamics-of-test,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/rodsveiga/sgf_dyn/main/README.md,,,,,
accuracy-of-textfooler-black-box-adversarial,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/zero-one-loss/wordcnn01/main/LICENSE,,,,,
differentially-private-decentralized-learning-1,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/totilas/DPrandomwalk/main/README.md,,,,,
aydiv-adaptable-yielding-3d-object-detection,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/sanjay-810/AYDIV2/main/README.md,"### **Installation**
1.  Prepare for the running environment. 

    You can use the docker image provided by [`OpenPCDet`](https://github.com/open-mmlab/OpenPCDet). Our experiments are based on the
    docker provided by Voxel-R-CNN and we use NVIDIA Tesla V100 to train our Aydiv.

2. Prepare for the data.

    Convert Argoverse 2 (or) waymo open Dataset into kitti format [`converter`](https://github.com/sanjay-810/AYDIV_ICRA/tree/main/data_converter/convert)

    Please prepare dataset as [`OpenPCDet`](https://github.com/open-mmlab/OpenPCDet).  
    
    To generate depth_pseudo_rgbseguv_twise by yourself with depth_dense_twise as follows:

    ```
    cd Aydiv
    python depth_to_lidar.py
    ```
    
    If you want to generate dense depth maps by yourself, it is recommended to use [`TWISE`](https://github.com/imransai/TWISE). The dense depth maps we provide are generated by TWISE. Anyway, you should have your dataset as follows:

    ```
    Aydiv
    ___ data
    _   ___ waymo_aydiv_seguv_twise
    _   _   ___ ImageSets
    _   _   ___ training
    _   _   _   ___calib & velodyne & label_2 & image_2 & (optional: planes) & depth_dense_twise & depth_pseudo_rgbseguv_twise
    _   _   ___ testing
    _   _   _   ___calib & velodyne & image_2 & depth_dense_twise & depth_pseudo_rgbseguv_twise
    ___ pcdet
    ___ tools
    ```
    Each pseudo point in depth_pseudo_rgbseguv_twise has 9 attributes (x, y, z, r, g, b, seg, u, v). It should be noted that we do not use the seg attribute, because the image segmentation results cannot bring improvement to Aydiv in our experiments. Argoverse 2 data should be in same format.

3. Setup.

    ```
    cd Aydiv
    python setup.py develop
    cd pcdet/ops/iou3d/cuda_op
    python setup.py develop
    cd ../../../..
    ```","source,docker","[plan source]>> step1. Prepare for the running environment. step2. prepare for the data:```cd Aydiv python depth_to_lidar.py ```
[plan docker]>> step1. You can use the docker image provided by [`OpenPCDet`](https://github.com/open-mmlab/OpenPCDet)",,
cartesian-atomic-cluster-expansion-for,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/BingqingCheng/cace/main/README.md,"## Installation

Please refer to the `setup.py` file for installation instructions.",source,[plan source]>>[INCOMPLETE] step1. please refer to the `setup.py` file for installation instructions.,,
teller-a-trustworthy-framework-for,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/less-and-less-bugs/Trust_TELLER/main/README.md,"## Getting Started

Step 1: Download the dataset folder from onedrive by [data.zip](https://portland-my.sharepoint.com/:u:/g/personal/liuhui3-c_my_cityu_edu_hk/EfApQlFP3PhFjUW4527STo0BALMdP16zs-HPMNgwQVFWsA?e=zoHlW2). Unzip this folder into the project  directory.  You can find four orginal datasets,  pre-processed datasets (i.e., val.jsonl, test.jsonl, train.jsonl in each dataset folder) and the files incuding questions and answers 

Step 2: Place you OpenAI key into the file named api_key.txt. 

```
openai.api_key = """"
```",binary,"[plan binary]>> step1: Download the dataset folder from onedrive by https://portland-my.sharepoint.com/:u:/g/personal/liuhui3-c_my_cityu_edu_hk/EfApQlFP3PhFjUW4527STo0BALMdP16zs-HPMNgwQVFWsA?e=zoHlW2. 
step2. Unzip this folder into the project  directory.
step3. Place you OpenAI key into the file named api_key.txt.
```
openai.api_key = """"
```",,
continuous-time-radar-inertial-and-lidar,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/utiasASRL/steam_icp/master/README.md,"## Installation

Clone this repository and its submodules.

We use docker to install dependencies The recommended way to build the docker image is

```bash
docker build -t steam_icp \
  --build-arg USERID=$(id -u) \
  --build-arg GROUPID=$(id -g) \
  --build-arg USERNAME=$(whoami) \
  --build-arg HOMEDIR=${HOME} .
```

When starting a container, remember to mount the code, dataset, and output directories to proper locations in the container.
An example command to start a docker container with the image is

```bash
docker run -it --name steam_icp \
  --privileged \
  --network=host \
  -e DISPLAY=$DISPLAY \
  -v /tmp/.X11-unix:/tmp/.X11-unix \
  -v ${HOME}:${HOME}:rw \
  steam_icp
```

(Inside Container) Go to the root directory of this repository and build STEAM-ICP

```bash
bash build.sh
```",source,"[plan source]>> step1. clone this repository and its submodules. step2.  Use docker to install dependencies  ```docker build -t steam_icp \
  --build-arg USERID=$(id -u) \
  --build-arg GROUPID=$(id -g) \
  --build-arg USERNAME=$(whoami) \
  --build-arg HOMEDIR=${HOME} .
``` 
step3. mount the code, dataset, and output directories to proper locations in the container.
```
docker run -it --name steam_icp \
  --privileged \
  --network=host \
  -e DISPLAY=$DISPLAY \
  -v /tmp/.X11-unix:/tmp/.X11-unix \
  -v ${HOME}:${HOME}:rw \
  steam_icp
step4.(Inside Container) Go to the root directory of this repository and build STEAM-ICP
```bash
bash build.sh
```",,
towards-a-thermodynamical-deep-learning,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/fedezocco/ThermoVisMedRob/main/README.md,,,,,
robust-parameter-fitting-to-realistic-network,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/PFischbeck/parameter-fitting-experiments/main/Readme.md,"# Installation

- Make sure you have Python, Pip and R installed.
- Checkout this repository
- Install the python dependencies with

```
pip3 install -r requirements.txt
```

- Install the `pygirgs` package at https://github.com/PFischbeck/pygirgs

- Install the R dependencies (used for plots) with

```
R -e 'install.packages(c(""ggplot2"", ""reshape2"", ""plyr"", ""dplyr"", ""scales""), repos=""https://cloud.r-project.org/"")'
```

- Download the file `konect-data.zip` from [Zenodo](https://doi.org/10.5281/zenodo.10629451) and extract its contents into the folder `input_data/konect`
- Optional: Download the file `output-data.zip` from [Zenodo](https://doi.org/10.5281/zenodo.10629451) and extract its contents into the folder `output_data`. This way, you can access all experiment results without running them yourself.",source,"[plan source]>> step1. Make sure you have Python, Pip and R installed.
step2. Checkout this repository
step3. Install the python dependencies with
```
pip3 install -r requirements.txt
```
step4. Install the `pygirgs` package at https://github.com/PFischbeck/pygirgs
step5. Install the R dependencies (used for plots) with
```
R -e 'install.packages(c(""ggplot2"", ""reshape2"", ""plyr"", ""dplyr"", ""scales""), repos=""https://cloud.r-project.org/"")'
```
step6. Download the file `konect-data.zip` from [Zenodo](https://doi.org/10.5281/zenodo.10629451) and extract its contents into the folder `input_data/konect`
step7. Optional: Download the file `output-data.zip` from [Zenodo](https://doi.org/10.5281/zenodo.10629451) and extract its contents into the folder `output_data`. This way, you can access all experiment results without running them yourself.","step7. Optional: Download the file `output-data.zip` from [Zenodo](https://doi.org/10.5281/zenodo.10629451) and extract its contents into the folder `output_data`. This way, you can access all experiment results without running them yourself.",
get-tok-a-genai-enriched-multimodal-tiktok,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/gabbypinto/GET-Tok-Peru/main/README.md,"## Installation
pip install -r requirements.txt 

*Note: I did not us a virtual environment so the packages in the requirements.txt file are probably not reflective of all the packages used in this project. If some issues pop up please don't hesitate to email me at: gpinto@usc.edu*",packagemanager,[plan packagemanager]>>step1. pip install -r requirements.txt ,,*Note: I did not us a virtual environment so the packages in the requirements.txt file are probably not reflective of all the packages used in this project. If some issues pop up please don't hesitate to email me at: gpinto@usc.edu*
a-longitudinal-study-of-italian-and-french,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/orsoFra/LS_FRIT_UKR/main/README.md,,,,,
geometric-slosh-free-tracking-for-robotic,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/jonarriza96/gsft/main/README.md,"## Installation

### Dependencies

Initialize git submodules with

```
    git submodule init
    git submodule update
```

### Python environment

Install the specific versions of every package from `requirements.txt` in a new conda environment:

```
conda create --name gsft python=3.9
conda activate gsft
pip install -r requirements.txt
```

To ensure that Python paths are properly defined, update the `~/.bashrc` by adding the following lines

```
export GSFT_PATH=/path_to_gsfc
export PYTHONPATH=$PYTHONPATH:/$GSFT_PATH
```",source,"[plan source]>> step1. Check dependencies. step2. Initialize git submodules with
```
    git submodule init
    git submodule update
```
step3. Create conda environment and install requirements:
```
conda create --name gsft python=3.9
conda activate gsft
pip install -r requirements.txt
```
step4. Create variables to ensure that Python paths are properly defined, update the `~/.bashrc` by adding the following lines
```
export GSFT_PATH=/path_to_gsfc
export PYTHONPATH=$PYTHONPATH:/$GSFT_PATH
```",,
real-time-line-based-room-segmentation-and,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/EricssonResearch/Line-Based-Room-Segmentation-and-EDF/release/README.md,"## Installation
The project can be installed by running the following command in your terminal:
```bash
pip install -r requirements.txt
```",source,"[plan source]>>[INCOMPLETE]step1. Run the command in your terminal:
```
pip install -r requirements.txt
```",,
viga,https://bio.tools/,https://raw.githubusercontent.com/viralInformatics/VIGA/master/README.md,"## Installation

### Step1: Download VIGA

Download VIGA with Git from GitHub

```
git clone https://github.com/viralInformatics/VIGA.git
```

or Download ZIP to local

### Step 2: Download Database

```
1. download taxdmp.zip [Index of /pub/taxonomy (nih.gov)](https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/) and unzip taxdmp.zip and put it in ./db/

2. download ""prot.accession2taxid"" file from https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/

3. download ""RefSeqVirusProtein"" file from
wget -c ftp.ncbi.nlm.nih.gov/refseq/release/viral/viral.1.protein.faa.gz
gzip -d viral.1.protein.faa.gz
mv viral.1.protein.faa RefSeqVirusProtein

4. download ""nr"" file from
wget -c ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
or ascp -T  -i  asperaweb_id_dsa.openssh --host=ftp.ncbi.nih.gov --user=anonftp --mode=recv /blast/db/FASTA/nr.gz ./
gzip -d nr.gz

5. Use Diamond v2.0.11.149 to create two separate databases as the indexing libraries in the current version are incompatible with each other.

6. In order to set up a reference database for DIAMOND, the makedb command needs to be executed with the following command line:
diamond makedb --in YourPath/RefSeqVirusProtein  -d Diamond_RefSeqVirusProtein --taxonmap YourPath/prot.accession2taxid --taxonnodes YourPath/nodes.dmp
diamond makedb --in nr -d Dimond_nr --taxonmap YourPath/prot.accession2taxid --taxonnodes YourPath/nodes.dmp

```

### Step 3: Installation of dependent software

#### Installing Some Software Using Conda

```
conda install fastp=0.12.4 trinity=2.8.5 diamond=2.0.11.149 ragtag=2.1.0 quast=5.0.2
```

#### Manual Installation of MetaCompass

https://github.com/marbl/MetaCompass

### Step 4: Python Dependencies

Base on python 3.6.8

```
pip install pandas=1.1.5 numpy=1.19.5  matplotlib=3.3.4  biopython=1.79
```
",source,"[plan source]>> step1. Download VIGA with Git from GitHub:
```
git clone https://github.com/viralInformatics/VIGA.git
(stepOptional). or Download ZIP to local
step2.download Database:
step2.1.download taxdmp.zip: https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/ and unzip taxdmp.zip and put it in ./db/
step2.2.download ""prot.accession2taxid"" file from https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/
step2.3.download ""RefSeqVirusProtein"" file from
```wget -c ftp.ncbi.nlm.nih.gov/refseq/release/viral/viral.1.protein.faa.gz
gzip -d viral.1.protein.faa.gz
mv viral.1.protein.faa RefSeqVirusProtein```
step2.4. download ""nr"" file from```
wget -c ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
or ascp -T  -i  asperaweb_id_dsa.openssh --host=ftp.ncbi.nih.gov --user=anonftp --mode=recv /blast/db/FASTA/nr.gz ./
gzip -d nr.gz```
step2.5.use Diamond v2.0.11.149 to create two separate databases.
step2.6.In order to set up a reference database for DIAMOND, the makedb command needs to be executed with the following command line:
diamond makedb --in YourPath/RefSeqVirusProtein  -d Diamond_RefSeqVirusProtein --taxonmap YourPath/prot.accession2taxid --taxonnodes YourPath/nodes.dmp
diamond makedb --in nr -d Dimond_nr --taxonmap YourPath/prot.accession2taxid --taxonnodes YourPath/nodes.dmp
```
step3. installing  requirements via conda
```
conda install fastp=0.12.4 trinity=2.8.5 diamond=2.0.11.149 ragtag=2.1.0 quast=5.0.2
```
step4: install Python dependencies base on python 3.6.8
```
pip install pandas=1.1.5 numpy=1.19.5  matplotlib=3.3.4  biopython=1.79
```",,"manual Installation of MetaCompass
https://github.com/marbl/MetaCompass"
lncrtpred,https://bio.tools/,https://raw.githubusercontent.com/zglabDIB/LncRTPred/main/README.md,,,,,
nrn-ez,https://bio.tools/,https://raw.githubusercontent.com/scimemia/NRN-EZ/master/README.md,"**INSTALLATION FOR VERSION 1.1.6**

NRN-EZ was built with PyInstaller 3.6, and requires the following languages and libraries:

ÔøΩ	Python 3.6.9 and higher (currently up to 3.10)

ÔøΩ	PyQt 5.10.1

ÔøΩ	PyQtGraph 0.11.0

Installation instructions for Linux (Ubuntu and Pop!_OS): download the Linux zip file and, from the command window, run a bash command for the install.sh file, in the corresponding installation folder. 

Installation instructions for Mac OS: download the Mac zip file and copy the NRN-EZ app to the Applications folder. 

Installation instructions for Windows: download the Win zip file and run the installation wizard.",binary,"[plan binary]>> step1. install requirements:
Python 3.6.9 and higher (currently up to 3.10)
PyQt 5.10.1
PyQtGraph 0.11.0
step2. for linux:download the Linux zip file and, from the command window. step3. run a bash command for the install.sh file in the corresponding installation folder. ",,"2. for linux:download the Linux zip file and, from the command window, run a bash command for the install.sh file, in the corresponding installation folder. 
2. for Mac OS: download the Mac zip file and copy the NRN-EZ app to the Applications folder. 
2. for Windows: download the Win zip file and run the installation wizard."
causnet,https://bio.tools/,https://raw.githubusercontent.com/nand1155/CausNet/main/README.md,"## Installation

You can install the development version from GitHub with:

``` r
require(""devtools"")
install_github(""https://github.com/nand1155/CausNet"")
```",source,"[plan source]>>step1.install the development version from GitHub with:
``` r
require(""devtools"")
install_github(""https://github.com/nand1155/CausNet"")
```",,
viralcc,https://bio.tools/,https://raw.githubusercontent.com/dyxstat/Reproduce_ViralCC/main/README.md,"""# Instruction of reproducing results in ViralCC paper
We take the cow fecal datasets for example. The other two datasets were processed following the same procedure.

Scripts to process the intermediate data and plot figures are available in the folder [Scripts](https://github.com/dyxstat/Reproduce_ViralCC/tree/main/Scripts).

Source data of Figure 2 and 3 in the main text and Figure S1 in the supplementary materials are provided in the folder [Source Data](https://github.com/dyxstat/Reproduce_ViralCC/tree/main/Source%20Data).

**Version of softwares exploited in the analyses**
```
fastq_dump command from Sratoolkit: v2.10.8

bbduk.sh and clumpify.sh command from BBTools suite: v37.25

megahit command from MEGAHIT: v1.2.9

bwa command from BWA MEM: v0.7.17

samtools command from Samtools: v1.15.1

wrapper_phage_contigs_sorter_iPlant.pl command from VirSorter: v1.0.6

checkv command from CheckV: 0.7.0
```

**Step 1 Download and preprocess the raw data**

Note: NCBI may update its links for downloading the database. Please check the latest link at [NCBI](https://www.ncbi.nlm.nih.gov/) if you meet the download error.
```
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-13/ERR2282092/ERR2282092.1
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-13/ERR2530126/ERR2530126.1
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-13/ERR2530127/ERR2530127.1

fastq-dump --split-files --gzip ERR2282092.1
fastq-dump --split-files --gzip ERR2530126.1
fastq-dump --split-files --gzip ERR2530127.1

bbduk.sh  in1=ERR2282092.1_1.fastq.gz in2=ERR2282092.1_2.fastq.gz out1=COWSG1_AQ.fastq.gz out2=COWSG2_AQ.fastq.gz ref=/home1/yuxuandu/cmb/SOFTWARE/bbmap/resources/adapters.fa ktrim=r k=23 mink=11 hdist=1 minlen=50 tpe tbo
bbduk.sh  in1=ERR2530126.1_1.fastq.gz in2=ERR2530126.1_2.fastq.gz out1=S3HIC1_AQ.fastq.gz out2=S3HIC2_AQ.fastq.gz ref=/home1/yuxuandu/cmb/SOFTWARE/bbmap/resources/adapters.fa ktrim=r k=23 mink=11 hdist=1 minlen=50 tpe tbo
bbduk.sh  in1=ERR2530127.1_1.fastq.gz in2=ERR2530127.1_2.fastq.gz out1=M1HIC1_AQ.fastq.gz out2=M1HIC2_AQ.fastq.gz ref=/home1/yuxuandu/cmb/SOFTWARE/bbmap/resources/adapters.fa ktrim=r k=23 mink=11 hdist=1 minlen=50 tpe tbo

bbduk.sh  in1=S3HIC1_AQ.fastq.gz in2=S3HIC2_AQ.fastq.gz out1=S3HIC1_CL.fastq.gz out2=S3HIC2_CL.fastq.gz trimq=10 qtrim=r ftm=5 minlen=50
bbduk.sh  in1=M1HIC1_AQ.fastq.gz in2=M1HIC2_AQ.fastq.gz out1=M1HIC1_CL.fastq.gz out2=M1HIC2_CL.fastq.gz trimq=10 qtrim=r ftm=5 minlen=50
bbduk.sh  in1=COWSG1_AQ.fastq.gz in2=COWSG2_AQ.fastq.gz out1=COWSG1_CL.fastq.gz out2=COWSG2_CL.fastq.gz trimq=10 qtrim=r ftm=5 minlen=50

bbduk.sh in1=S3HIC1_CL.fastq.gz in2=S3HIC2_CL.fastq.gz out1=S3HIC1_trim.fastq.gz out2=S3HIC2_trim.fastq.gz ftl=10
bbduk.sh in1=M1HIC1_CL.fastq.gz in2=M1HIC2_CL.fastq.gz out1=M1HIC1_trim.fastq.gz out2=M1HIC2_trim.fastq.gz ftl=10

clumpify.sh in1=S3HIC1_trim.fastq.gz in2=S3HIC2_trim.fastq.gz out1=S3HIC1_dedup.fastq.gz out2=S3HIC2_dedup.fastq.gz dedupe
clumpify.sh in1=M1HIC1_trim.fastq.gz in2=M1HIC2_trim.fastq.gz out1=M1HIC1_dedup.fastq.gz out2=M1HIC2_dedup.fastq.gz dedupe
cat S3HIC1_dedup.fastq.gz M1HIC1_dedup.fastq.gz > HIC1.fastq.gz
cat S3HIC2_dedup.fastq.gz M1HIC2_dedup.fastq.gz > HIC2.fastq.gz
```

**Step 2: Assemble contigs and align processed Hi-C reads to contigs**
```
megahit -1 COWSG1_CL.fastq.gz -2 COWSG2_CL.fastq.gz -o COW_ASSEMBLY --min-contig-len 1000 --k-min 21 --k-max 141 --k-step 12 --merge-level 20,0.95

bwa index final.contigs.fa
bwa mem -5SP final.contigs.fa HIC1.fastq.gz HIC2.fastq.gz > COW_MAP.sam
samtools view -F 0x904 -bS COW_MAP.sam > COW_MAP_UNSORTED.bam
samtools sort -n COW_MAP_UNSORTED.bam -o COW_MAP_SORTED.bam
```

**Step3: Identify viral contigs from assembled contigs**
```
perl removesmalls.pl 3000 final.contigs.fa > cow_3000.fa
wrapper_phage_contigs_sorter_iPlant.pl -f cow_3000.fa --db 1 --wdir output_directory --ncpu 16 --data-dir /panfs/qcb-panasas/yuxuandu/virsorter-data
Rscript find_viral_contig.R
```

**Step4: Run ViralCC**
```
python ./viralcc.py pipeline -v final.contigs.fa COW_MAP_SORTED.bam viral.txt out_cow
```

**Step5: Evaluation draft viral genomes using CheckV**
```
python concatenation.py -p out_cow/VIRAL_BIN -o viralCC_cow_bins.fa
checkv end_to_end viralCC_cow_bins.fa output_checkv_viralcc_cow -t 16 -d /panfs/qcb-panasas/yuxuandu/checkv-db-v1.0
```""",source,"[plan source]>>step1.download and preprocess the raw data.
```
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-13/ERR2282092/ERR2282092.1
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-13/ERR2530126/ERR2530126.1
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-13/ERR2530127/ERR2530127.1
fastq-dump --split-files --gzip ERR2282092.1
fastq-dump --split-files --gzip ERR2530126.1
fastq-dump --split-files --gzip ERR2530127.1
bbduk.sh  in1=ERR2282092.1_1.fastq.gz in2=ERR2282092.1_2.fastq.gz out1=COWSG1_AQ.fastq.gz out2=COWSG2_AQ.fastq.gz ref=/home1/yuxuandu/cmb/SOFTWARE/bbmap/resources/adapters.fa ktrim=r k=23 mink=11 hdist=1 minlen=50 tpe tbo
bbduk.sh  in1=ERR2530126.1_1.fastq.gz in2=ERR2530126.1_2.fastq.gz out1=S3HIC1_AQ.fastq.gz out2=S3HIC2_AQ.fastq.gz ref=/home1/yuxuandu/cmb/SOFTWARE/bbmap/resources/adapters.fa ktrim=r k=23 mink=11 hdist=1 minlen=50 tpe tbo
bbduk.sh  in1=ERR2530127.1_1.fastq.gz in2=ERR2530127.1_2.fastq.gz out1=M1HIC1_AQ.fastq.gz out2=M1HIC2_AQ.fastq.gz ref=/home1/yuxuandu/cmb/SOFTWARE/bbmap/resources/adapters.fa ktrim=r k=23 mink=11 hdist=1 minlen=50 tpe tbo
bbduk.sh  in1=S3HIC1_AQ.fastq.gz in2=S3HIC2_AQ.fastq.gz out1=S3HIC1_CL.fastq.gz out2=S3HIC2_CL.fastq.gz trimq=10 qtrim=r ftm=5 minlen=50
bbduk.sh  in1=M1HIC1_AQ.fastq.gz in2=M1HIC2_AQ.fastq.gz out1=M1HIC1_CL.fastq.gz out2=M1HIC2_CL.fastq.gz trimq=10 qtrim=r ftm=5 minlen=50
bbduk.sh  in1=COWSG1_AQ.fastq.gz in2=COWSG2_AQ.fastq.gz out1=COWSG1_CL.fastq.gz out2=COWSG2_CL.fastq.gz trimq=10 qtrim=r ftm=5 minlen=50
bbduk.sh in1=S3HIC1_CL.fastq.gz in2=S3HIC2_CL.fastq.gz out1=S3HIC1_trim.fastq.gz out2=S3HIC2_trim.fastq.gz ftl=10
bbduk.sh in1=M1HIC1_CL.fastq.gz in2=M1HIC2_CL.fastq.gz out1=M1HIC1_trim.fastq.gz out2=M1HIC2_trim.fastq.gz ftl=10
clumpify.sh in1=S3HIC1_trim.fastq.gz in2=S3HIC2_trim.fastq.gz out1=S3HIC1_dedup.fastq.gz out2=S3HIC2_dedup.fastq.gz dedupe
clumpify.sh in1=M1HIC1_trim.fastq.gz in2=M1HIC2_trim.fastq.gz out1=M1HIC1_dedup.fastq.gz out2=M1HIC2_dedup.fastq.gz dedupe
cat S3HIC1_dedup.fastq.gz M1HIC1_dedup.fastq.gz > HIC1.fastq.gz
cat S3HIC2_dedup.fastq.gz M1HIC2_dedup.fastq.gz > HIC2.fastq.gz
```
step2.assemble contigs and step3. align processed Hi-C reads to contigs**
```
megahit -1 COWSG1_CL.fastq.gz -2 COWSG2_CL.fastq.gz -o COW_ASSEMBLY --min-contig-len 1000 --k-min 21 --k-max 141 --k-step 12 --merge-level 20,0.95
bwa index final.contigs.fa
bwa mem -5SP final.contigs.fa HIC1.fastq.gz HIC2.fastq.gz > COW_MAP.sam
samtools view -F 0x904 -bS COW_MAP.sam > COW_MAP_UNSORTED.bam
samtools sort -n COW_MAP_UNSORTED.bam -o COW_MAP_SORTED.bam
```
step4. identify viral contigs from assembled contigs:
```
perl removesmalls.pl 3000 final.contigs.fa > cow_3000.fa
wrapper_phage_contigs_sorter_iPlant.pl -f cow_3000.fa --db 1 --wdir output_directory --ncpu 16 --data-dir /panfs/qcb-panasas/yuxuandu/virsorter-data
Rscript find_viral_contig.R
```
step5. run ViralCC:
```
python ./viralcc.py pipeline -v final.contigs.fa COW_MAP_SORTED.bam viral.txt out_cow
```
step6. evaluation draft viral genomes using CheckV:
```
python concatenation.py -p out_cow/VIRAL_BIN -o viralCC_cow_bins.fa
checkv end_to_end viralCC_cow_bins.fa output_checkv_viralcc_cow -t 16 -d /panfs/qcb-panasas/yuxuandu/checkv-db-v1.0
```",, (extra comment: NCBI may update its links for downloading the database. Please check the latest link at [NCBI](https://www.ncbi.nlm.nih.gov/) if you meet the download error)
DRaW,https://bio.tools/,https://raw.githubusercontent.com/BioinformaticsIASBS/DRaW/main/README.md,"# Running DRaW on COVID-19 datasets
The DRaW has been applied on three COVID-19 datasets, DS1, DS2, and DS3. There are three subdirectories, ÔøΩDS1_repurÔøΩ, ÔøΩDS2_repurÔøΩ, and ÔøΩDS3_repurÔøΩ, in the ÔøΩDrug-RepurposingÔøΩ directory. Each subdirectory has been assigned to one of the mentioned datasets. We put the Draw implementation file for each dataset in each subdirectory separately. This is due to keep the corresponding hyperparameters of each dataset. 
We use Adam as the optimizer with a learning rate equal to 0.001, beta1 = 0.9, beta2 = 0.999, and epsilon = 1e_7. The dropout rate is set to 0.5. The batch size is chosen by the number of samples per dataset. This hyperparameter for DS1 is equal to 8, and those for DS2 and DS3 are set to 32.
To run the model, it is enough to execute ""Drug-Repurposing.py"" script in the command line. After that, execute ""score.py"". The repurposed drugs will be stored in the ""meanScore.csv"" spreadsheet. It contains the average of ach drug ranking. The lower, the better. For example, to run the DRaW on DS1:
```bash
cd Drug-Repurposing\DS1_repur
python Drug-Repurposing.py 
python score.py
```
Same goes for other datasets. Just change the directory path.
# Performance analysis
In order to analysis the performance, there is a one extra directory in the root, ÔøΩPerformance_analysisÔøΩ. By running following command the model is trained on a given dataset and returns its performance metrics, AUC-ROC, AUPR, F1 score, etc.   
The input parameter ÔøΩdataset_nameÔøΩ is one the following five datasetsÔøΩ name. The first one is COVID-19 DS3 and other four are golden benchmarks. 
'DS3','ic','nr','gpcr','e'

```bash
cd Performance_analysis
python main.py dataset_name
```",source,"[plan source]>>step1.execute ""Drug-Repurposing.py"" script in the command line. step2. after that, execute ""score.py"":
```bash
cd Drug-Repurposing\DS1_repur
python Drug-Repurposing.py 
python score.py
```",," The repurposed drugs will be stored in the ""meanScore.csv"" spreadsheet. It contains the average of ach drug ranking. The lower, the better. For example, to run the DRaW on DS1"
NRN-EZ,https://bio.tools/,https://raw.githubusercontent.com/scimemia/NRN-EZ/master/README.md,"**INSTALLATION FOR VERSION 1.1.6**

NRN-EZ was built with PyInstaller 3.6, and requires the following languages and libraries:

ÔøΩ	Python 3.6.9 and higher (currently up to 3.10)

ÔøΩ	PyQt 5.10.1

ÔøΩ	PyQtGraph 0.11.0

Installation instructions for Linux (Ubuntu and Pop!_OS): download the Linux zip file and, from the command window, run a bash command for the install.sh file, in the corresponding installation folder. 

Installation instructions for Mac OS: download the Mac zip file and copy the NRN-EZ app to the Applications folder. 

Installation instructions for Windows: download the Win zip file and run the installation wizard.",source,"[plan source]>>step1. install the requirements:Python 3.6.9 and higher (currently up to 3.10), PyQt 5.10.1, PyQtGraph 0.11.0
step2. for Linux: download the Linux zip file and, from the command window, run a bash command for the install.sh file, in the corresponding installation folder. 
step2. for Mac OS: download the Mac zip file and copy the NRN-EZ app to the Applications folder. 
step2. for Windows: download the Win zip file and run the installation wizard.","step2. for Linux: download the Linux zip file and, from the command window, run a bash command for the install.sh file, in the corresponding installation folder. 
step2. for Mac OS: download the Mac zip file and copy the NRN-EZ app to the Applications folder. 
step2. for Windows: download the Win zip file and run the installation wizard.",
guiding-instruction-based-image-editing-via,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/apple/ml-mgie/main/README.md,"## Requirements
```
conda create -n mgie python=3.10 -y
conda activate mgie
conda update -n base -c defaults conda setuptools -y
conda install -c conda-forge git git-lfs ffmpeg vim htop ninja gpustat -y
conda clean -a -y

pip install -U pip cmake cython==0.29.36 pydantic==1.10 numpy
pip install -U gdown pydrive2 wget jupyter jupyterlab jupyterthemes ipython
pip install -U sentencepiece transformers diffusers tokenizers datasets gradio==3.37 accelerate evaluate git+https://github.com/openai/CLIP.git
pip install -U https://download.pytorch.org/whl/cu113/torch-1.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchvision-0.13.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchaudio-0.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl
pip install -U deepspeed

# git clone this repo
cd ml-mgie
git submodule update --init --recursive
cd LLaVA
pip install -e .
pip install -U https://download.pytorch.org/whl/cu113/torch-1.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchvision-0.13.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchaudio-0.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl
pip install -U ninja flash-attn==1.0.2
pip install -U pydrive2 gdown wget

cd ..
cp mgie_llava.py LLaVA/llava/model/llava.py
cp mgie_train.py LLaVA/llava/train/train.py
```",source,"[plan source]>> step1. create conda environment ```
conda create -n mgie python=3.10 -y
conda activate mgie
conda update -n base -c defaults conda setuptools -y
conda install -c conda-forge git git-lfs ffmpeg vim htop ninja gpustat -y
conda clean -a -y ```
step2. install dependencies ```
pip install -U pip cmake cython==0.29.36 pydantic==1.10 numpy
pip install -U gdown pydrive2 wget jupyter jupyterlab jupyterthemes ipython
pip install -U sentencepiece transformers diffusers tokenizers datasets gradio==3.37 accelerate evaluate git+https://github.com/openai/CLIP.git
pip install -U https://download.pytorch.org/whl/cu113/torch-1.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchvision-0.13.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchaudio-0.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl
pip install -U deepspeed ```
step3. git clone this repo ```
cd ml-mgie
git submodule update --init --recursive
cd LLaVA ```
step4. install module ```
pip install -e .
pip install -U https://download.pytorch.org/whl/cu113/torch-1.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchvision-0.13.0%2Bcu113-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/cu113/torchaudio-0.12.0%2Bcu113-cp310-cp310-linux_x86_64.whl
pip install -U ninja flash-attn==1.0.2
pip install -U pydrive2 gdown wget
cd ..
cp mgie_llava.py LLaVA/llava/model/llava.py
cp mgie_train.py LLaVA/llava/train/train.py
```",,
self-play-fine-tuning-converts-weak-language,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/uclaml/SPIN/main/README.md,"## Setup
The following steps provide the necessary setup to run our codes.
1. Create a Python virtual environment with Conda:
```
conda create -n myenv python=3.10
conda activate myenv
```
2. Install PyTorch `v2.1.0` with compatible cuda version, following instructions from [PyTorch Installation Page](https://pytorch.org/get-started/locally/). For example with cuda 11:
```
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118
```
3. Install the following Python dependencies to run the codes.
```
python -m pip install .
python -m pip install flash-attn --no-build-isolation
```
4. Login to your huggingface account for downloading models
```
huggingface-cli login --token ""${your_access_token}""
```",source,"[plan source]>>step1.create a Python virtual environment with Conda:
```
conda create -n myenv python=3.10
conda activate myenv
```
step2.install PyTorch `v2.1.0` with compatible cuda version, following instructions from [PyTorch Installation Page](https://pytorch.org/get-started/locally/). For example with cuda 11:
```
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118
```
step3.install the following Python dependencies to run the codes.
```
python -m pip install .
python -m pip install flash-attn --no-build-isolation
```
step4.login to your huggingface account for downloading models
```
huggingface-cli login --token ""${your_access_token}""
```",,
genegpt-teaching-large-language-models-to-use,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/ncbi/GeneGPT/main/README.md,"# Requirements

The code has been tested with Python 3.9.13. Please first install the required packages by:
```bash
pip install -r requirements.txt
```

You also need an OpenAI API key to run GeneGPT with Codex. Replace the placeholder with your key in `config.py`:
```bash
$ cat config.py 
API_KEY = 'YOUR_OPENAI_API_KEY'
```

## Using GeneGPT

After setting up the environment, one can run GeneGPT on GeneTuring by:
```bash
python main.py 111111
```
where `111111` denotes that all Documentations (Dc.1-2) and Demonstrations (Dm.1-4) are used.

To run GeneGPT-slim, simply use:
```bash
python main.py 001001
```
which will only use the Dm.1 and Dm.4 for in-context learning.",source,"[plan source]>>step1.install requirements:
```bash
pip install -r requirements.txt
```
step2.set OpenAI API key to run GeneGPT with Codex. replace the placeholder with your key in `config.py`:
```bash
$ cat config.py 
API_KEY = 'YOUR_OPENAI_API_KEY'
```
step3. execute GeneGPT
After setting up the environment, one can run GeneGPT on GeneTuring by:
```bash
python main.py 111111
```
where `111111` denotes that all Documentations (Dc.1-2) and Demonstrations (Dm.1-4) are used.
step4. To run GeneGPT-slim, simply use:
```bash
python main.py 001001
```",,The code has been tested with Python 3.9.13
the-boundary-of-neural-network-trainability,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/Sohl-Dickstein/fractal/main/README.md,,,,,
learning-to-fly-in-seconds,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/arplaboratory/learning-to-fly/master/README.MD,"## Instructions to run the code
### Docker (isolated)
We provide a pre-built Docker image with a simple web interface that can be executed using a single command (given that Docker is already installed on your machine):
```
docker run -it --rm -p 8000:8000 arpllab/learning_to_fly
```
After the container is running, navigate to [https://0.0.0.0:8000](https://0.0.0.0:8000) and you should see something like (after starting the training):

<div align=""center"">
<img src=""https://github.com/arplaboratory/learning_to_fly_media/blob/master/simulator_screenshot.png"" />
</div>

Note that to make this Docker image compatible with a broad range of CPUs, some optimizations have been turned off. For full speed we recommend a [Native installation](#Native-installation). 
### Docker installation (isolated)
With the following instructions you can also easily build the Docker image yourself. If you want to run the code on bare metal jump [Native installation](#Native-installation).

First, install Docker on your machine. Then move to the original directory `learning_to_fly` and build the Docker image:
```
docker build -t arpllab/learning_to_fly .
```
If desired you can also build the container for building the firmware:
```
docker build -t arpllab/learning_to_fly_build_firmware -f Dockerfile_build_firmware .
```
After that you can run it using e.g.:
```
docker run -it --rm -p 8000:8000 arpllab/learning_to_fly
```
This will open the port `8000` for the UI of the training program and run it inside the container.

Navigate to [https://0.0.0.0:8000](https://0.0.0.0:8000) with your browser, and you should see something like in the screenshot above (after starting the training).

The training UI configuration does not log data by default. If you want to inspect the training data run:
```
docker run -it --rm -p 6006:6006 arpllab/learning_to_fly training_headless
```
Navigate to [https://0.0.0.0:6006](https://0.0.0.0:6006) with your browser to investigate the Tensorboard logs.

If you would like to benchmark the training speed you can use:
```
docker run -it --rm arpllab/learning_to_fly training_benchmark
```
This is the fastest configuration, without logging, UI, checkpointing etc.
### Native installation
Clone this repository:
```
git clone https://github.com/arplaboratory/learning-to-fly learning_to_fly
cd learning_to_fly
```
Then instantiate the `RLtools` submodule:
```
git submodule update --init -- external/rl_tools
cd external/rl_tools
```

Then instantiate some dependencies of `RLtools` (for conveniences like checkpointing, Tensorboard logging, testing, etc.):
```
git submodule update --init -- external/cli11 external/highfive external/json/ external/tensorboard tests/lib/googletest/
```

#### Install dependencies on Ubuntu
```
sudo apt update && sudo apt install libhdf5-dev libopenblas-dev protobuf-compiler libprotobuf-dev libboost-all-dev
```
As an alternative to openblas you can also install [Intel MKL](https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html) which in our experience is significantly faster than OpenBLAS.
#### Install dependencies on macOS
```
brew install hdf5 protobuf boost
```
Please make sure that `brew` links the libraries correctly. If not you might have to link e.g. `protobuf` manually using `brew link protobuf`.




Going back to the main directory (`learning_to_fly`), we can now configure the build of the code:
```
cd ../../
mkdir build
cd build
```
- Ubuntu + OpenBLAS: `cmake .. -DCMAKE_BUILD_TYPE=Release -DRL_TOOLS_BACKEND_ENABLE_OPENBLAS:BOOL=ON`
- Ubuntu + MKL: `cmake .. -DCMAKE_BUILD_TYPE=Release -DRL_TOOLS_BACKEND_ENABLE_MKL:BOOL=ON`
- macOS (tested on Sonoma): `cmake .. -DCMAKE_BUILD_TYPE=Release`

Finally, we can build the targets:
```
cmake --build . -j8
```

After successfully building the targets, we can run the code (in the original directory `learning_to_fly`):
```
cd ..
./build/src/training_headless 
```
While this is running, you should be able to see training metrics using Tensorboard

If not already installed:
```
python3 -m pip install tensorboard
```
Then from the original directory `learning_to_fly`:
```
tensorboard --logdir=logs
```

To run the training with the UI, we download the JavaScript dependencies in the form of the two files `three.module.js` and `OrbitControls.js`:
```
cd src/ui
./get_dependencies.sh
```

After that we can execute the UI binary from the root folder:
```
cd ../../
./build/src/ui 0.0.0.0 8000
```
Now you should be able to navigate to [http://0.0.0.0:8000](http://0.0.0.0:8000) in your browser and start the training.

To run the benchmark (with UI, checkpointing and Tensorboard logging turned off):
```
sudo nice -n -20 ./build/src/training_benchmark
```

## Deploying trained policies on a Crazyflie
Train a policy, e.g. using the Docker image with the UI:
```
docker run -it --rm -p 8000:8000 -v $(pwd)/checkpoints:/learning_to_fly/checkpoints arpllab/learning_to_fly 
```
The checkpoints are placed in the current working directory's `checkpoints` folder. Inspect the logs of the container to find the path of the final log, e.g., `checkpoints/multirotor_td3/2023_11_16_14_46_38_d+o+a+r+h+c+f+w+e+_002/actor_000000000300000.h`. 
We can mount this file into the container `arpllab/learning_to_fly_build_firmware` for building the firmware, e.g.: 
```
docker run -it --rm -v $(pwd)/checkpoints/multirotor_td3/2023_11_16_14_46_38_d+o+a+r+h+c+f+w+e+_002/actor_000000000300000.h:/controller/data/actor.h:ro -v $(pwd)/build_firmware:/output arpllab/learning_to_fly_build_firmware
```
This should build the firmware using the newly trained policy and output the binary to `build_firmware/cf2.bin`. After that we can use the `cfclient` package to flash the firmware (find the installation instructions [here](https://www.bitcraze.io/documentation/repository/crazyflie-clients-python/master/installation/install/))
```
cfloader flash build_firmware/cf2.bin stm32-fw -w radio://0/80/2M
```","source,docker","[plan>>Docker(isolated)]
step1: Execute a single command (given that Docker is already installed on your machine):
```
docker run -it --rm -p 8000:8000 arpllab/learning_to_fly
```
step2. the container is running, now step3. navigate to [https://0.0.0.0:8000](https://0.0.0.0:8000) and step 4. you should see something like (after starting the training):
<div align=""center"">
<img src=""https://github.com/arplaboratory/learning_to_fly_media/blob/master/simulator_screenshot.png"" />
</div>
Note that to make this Docker image compatible with a broad range of CPUs, some optimizations have been turned off. For full speed we recommend a [Native installation](#Native-installation). 
[plan>>Docker installation (isolated)]
step1. install Docker on your machine. step2. Then move to the original directory `learning_to_fly` and step3. build the Docker image:
```
docker build -t arpllab/learning_to_fly .
```
[optional] If desired you can also build the container for building the firmware:
```
docker build -t arpllab/learning_to_fly_build_firmware -f Dockerfile_build_firmware .
```
step4. After that you can run it using e.g.:
```
docker run -it --rm -p 8000:8000 arpllab/learning_to_fly
```
Context. This will open the port `8000` for the UI of the training program and run it inside the container.
step5. Navigate to [https://0.0.0.0:8000](https://0.0.0.0:8000) with your browser, and you should see something like in the screenshot above (after starting the training).
The training UI configuration does not log data by default. If you want to inspect the training data run:
```
docker run -it --rm -p 6006:6006 arpllab/learning_to_fly training_headless
```
Navigate to [https://0.0.0.0:6006](https://0.0.0.0:6006) with your browser to investigate the Tensorboard logs.

[plan>>Native installation]
step1. clone this repository:
```
git clone https://github.com/arplaboratory/learning-to-fly learning_to_fly
cd learning_to_fly
```
step2.Instantiate the `RLtools` submodule:
```
git submodule update --init -- external/rl_tools
cd external/rl_tools
```
step3. Check dependencies of `RLtools` (for conveniences like checkpointing, Tensorboard logging, testing, etc.):
```
git submodule update --init -- external/cli11 external/highfive external/json/ external/tensorboard tests/lib/googletest/
```
step4. Install dependencies on Ubuntu
```
sudo apt update && sudo apt install libhdf5-dev libopenblas-dev protobuf-compiler libprotobuf-dev libboost-all-dev
```
optional. As an alternative to openblas you can also install [Intel MKL](https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html) which in our experience is significantly faster than OpenBLAS.
#### Install dependencies on macOS
```
brew install hdf5 protobuf boost
```
step5.  Configure the build of the code:
```
cd ../../
mkdir build
cd build
```
- Ubuntu + OpenBLAS: `cmake .. -DCMAKE_BUILD_TYPE=Release -DRL_TOOLS_BACKEND_ENABLE_OPENBLAS:BOOL=ON`
- Ubuntu + MKL: `cmake .. -DCMAKE_BUILD_TYPE=Release -DRL_TOOLS_BACKEND_ENABLE_MKL:BOOL=ON`
- macOS (tested on Sonoma): `cmake .. -DCMAKE_BUILD_TYPE=Release`
step6. build the targets:
```
cmake --build . -j8
```
step7. run the code (in the original directory `learning_to_fly`):
```
cd ..
./build/src/training_headless 
```
While this is running, you should be able to see training metrics using Tensorboard

If not already installed:
```
python3 -m pip install tensorboard
```
Then from the original directory `learning_to_fly`:
```
tensorboard --logdir=logs
```

To run the training with the UI, we download the JavaScript dependencies in the form of the two files `three.module.js` and `OrbitControls.js`:
```
cd src/ui
./get_dependencies.sh
```
step8.execute the UI binary from the root folder:
```
cd ../../
./build/src/ui 0.0.0.0 8000
```
step9. navigate to [http://0.0.0.0:8000](http://0.0.0.0:8000) in your browser and start the training.
step10. run the benchmark (with UI, checkpointing and Tensorboard logging turned off):
```
sudo nice -n -20 ./build/src/training_benchmark
```",,
/LargeWorldModel/LWM,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/LargeWorldModel/LWM/main/README.md,"## Setup
Install the requirements with:
```
conda create -n lwm python=3.10
pip install -U ""jax[cuda12_pip]==0.4.23"" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
pip install -r requirements.txt
```
or set up TPU VM with:
```
sh tpu_requirements.sh
```","packagemanager, source","[plan packagemanager]>>step1.install the requirements with:
```
conda create -n lwm python=3.10
pip install -U ""jax[cuda12_pip]==0.4.23"" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
pip install -r requirements.txt
```
optional. set up TPU VM with:
```
sh tpu_requirements.sh
```",,"optional. set up TPU VM with:
```
sh tpu_requirements.sh
```"
microsoft/UFO,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/microsoft/UFO/main/README.md,"### ___ Step 1: Installation
UFO requires **Python >= 3.10** running on **Windows OS >= 10**. It can be installed by running the following command:
```bash
# [optional to create conda environment]
# conda create -n ufo python=3.10
# conda activate ufo

# clone the repository
git clone https://github.com/microsoft/UFO.git
cd UFO
# install the requirements
pip install -r requirements.txt
```

### __ Step 2: Configure the LLMs
Before running UFO, you need to provide your LLM configurations. Taking OpenAI as an example, you can configure `ufo/config/config.yaml` file as follows. 

#### OpenAI
```
API_TYPE: ""openai"" 
OPENAI_API_BASE: ""https://api.openai.com/v1/chat/completions"" # The base URL for the OpenAI API
OPENAI_API_KEY: ""YOUR_API_KEY""  # Set the value to the openai key for the llm model
OPENAI_API_MODEL: ""GPTV_MODEL_NAME""  # The only OpenAI model by now that accepts visual input
```

#### Azure OpenAI (AOAI)
```
API_TYPE: ""aoai"" 
OPENAI_API_BASE: ""YOUR_ENDPOINT"" # The AOAI API address. Format: https://{your-resource-name}.openai.azure.com/openai/deployments/{deployment-id}/completions?api-version={api-version}
OPENAI_API_KEY: ""YOUR_API_KEY""  # Set the value to the openai key for the llm model
OPENAI_API_MODEL: ""GPTV_MODEL_NAME""  # The only OpenAI model by now that accepts visual input
```


### __ Step 3: Start UFO

#### __ You can execute the following on your Windows command Line (CLI):

```bash
# assume you are in the cloned UFO folder
python -m ufo --task <your_task_name>
```

This will start the UFO process and you can interact with it through the command line interface. 
If everything goes well, you will see the following message:

```bash
Welcome to use UFO__, A UI-focused Agent for Windows OS Interaction. 
 _   _  _____   ___
| | | ||  ___| / _ \
| | | || |_   | | | |
| |_| ||  _|  | |_| |
 \___/ |_|     \___/
Please enter your request to be completed__:
```
#### __Reminder:  ####
- Before UFO executing your request, please make sure the targeted applications are active on the system.
- The GPT-V accepts screenshots of your desktop and application GUI as input. Please ensure that no sensitive or confidential information is visible or captured during the execution process. For further information, refer to [DISCLAIMER.md](./DISCLAIMER.md).


###  Step 4 __: Execution Logs 

You can find the screenshots taken and request & response logs in the following folder:
```
./ufo/logs/<your_task_name>/
```
You may use them to debug, replay, or analyze the agent output.",source,"[plan source]>>step1: Run the following command:
```
conda create -n ufo python=3.10
conda activate ufo
clone the repository
git clone https://github.com/microsoft/UFO.git
cd UFO```
step2. install the requirements:
```pip install -r requirements.txt
```
step 3: configure the LLMs `ufo/config/config.yaml` file as follows:
for OpenAI
```
API_TYPE: ""openai"" 
OPENAI_API_BASE: ""https://api.openai.com/v1/chat/completions"" # The base URL for the OpenAI API
OPENAI_API_KEY: ""YOUR_API_KEY""  # Set the value to the openai key for the llm model
OPENAI_API_MODEL: ""GPTV_MODEL_NAME""  # The only OpenAI model by now that accepts visual input
```
for Azure OpenAI (AOAI):
```
API_TYPE: ""aoai"" 
OPENAI_API_BASE: ""YOUR_ENDPOINT"" # The AOAI API address. Format: https://{your-resource-name}.openai.azure.com/openai/deployments/{deployment-id}/completions?api-version={api-version}
OPENAI_API_KEY: ""YOUR_API_KEY""  # Set the value to the openai key for the llm model
OPENAI_API_MODEL: ""GPTV_MODEL_NAME""  # The only OpenAI model by now that accepts visual input
```
step4: Start UFO using command line:
```
# assume you are in the cloned UFO folder
python -m ufo --task <your_task_name>
```
step5. check installation. If everything goes well, you will see the following message in the console:
```bash
Welcome to use UFO__, A UI-focused Agent for Windows OS Interaction. 
```",,"#### __Reminder:  ####
- Before UFO executing your request, please make sure the targeted applications are active on the system.
- The GPT-V accepts screenshots of your desktop and application GUI as input. Please ensure that no sensitive or confidential information is visible or captured during the execution process. For further information, refer to [DISCLAIMER.md](./DISCLAIMER.md).
###  Step 4 __: Execution Logs 
You can find the screenshots taken and request & response logs in the following folder:
```
./ufo/logs/<your_task_name>/
```
You may use them to debug, replay, or analyze the agent output."
/catid/dora,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/catid/dora/main/README.md,"## Demo

Install conda: https://docs.conda.io/projects/miniconda/en/latest/index.html

```bash
git clone https://github.com/catid/dora.git
cd dora

conda create -n dora python=3.10 -y && conda activate dora

pip install -U -r requirements.txt

python dora.py
```",source,"[plan source]>>step1. install conda:https://docs.conda.io/projects/miniconda/en/latest/index.html. step2. clone the repository and move to the folder:
```bash
git clone https://github.com/catid/dora.git
cd dora
step3. create conda environment:```
conda create -n dora python=3.10 -y && conda activate dora```
step4. install requirements:```
pip install -U -r requirements.txt```
step5. execute the script: ```python dora.py```",,
YOLO-World,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/AILab-CVC/YOLO-World/master/README.md,"### 1. Installation

YOLO-World is developed based on `torch==1.11.0` `mmyolo==0.6.0` and `mmdetection==3.0.0`.

#### Clone Project 

```bash
git clone --recursive https://github.com/AILab-CVC/YOLO-World.git
```
#### Install

```bash
pip install torch wheel -q
pip install -e .
```",source,"[plan source]>>step1. clone repository:
```
git clone --recursive https://github.com/AILab-CVC/YOLO-World.git
```
step2. install module:
pip install torch wheel -q
pip install -e .
```",,
FasterDecoding/BitDelta,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/FasterDecoding/BitDelta/main/README.md,"## Install

1. Clone the repo and navigate to BitDelta:

```
git clone https://github.com/FasterDecoding/BitDelta
cd BitDelta
```

2. Set up environment:

```bash
conda create -yn bitdelta python=3.9
conda activate bitdelta

pip install -e .
```",source,"[plan source]>>step1.clone the repo and navigate to BitDelta:
```
git clone https://github.com/FasterDecoding/BitDelta
cd BitDelta
```
step2.set up environment:
```bash
conda create -yn bitdelta python=3.9
conda activate bitdelta
pip install -e .
```",,
tensorflow,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/tensorflow/tensorflow/master/README.md,"## Install

See the [TensorFlow install guide](https://www.tensorflow.org/install) for the
[pip package](https://www.tensorflow.org/install/pip), to
[enable GPU support](https://www.tensorflow.org/install/gpu), use a
[Docker container](https://www.tensorflow.org/install/docker), and
[build from source](https://www.tensorflow.org/install/source).

To install the current release, which includes support for
[CUDA-enabled GPU cards](https://www.tensorflow.org/install/gpu) *(Ubuntu and
Windows)*:

```
$ pip install tensorflow
```

Other devices (DirectX and MacOS-metal) are supported using
[Device plugins](https://www.tensorflow.org/install/gpu_plugins#available_devices).

A smaller CPU-only package is also available:

```
$ pip install tensorflow-cpu
```

To update TensorFlow to the latest version, add `--upgrade` flag to the above
commands.

*Nightly binaries are available for testing using the
[tf-nightly](https://pypi.python.org/pypi/tf-nightly) and
[tf-nightly-cpu](https://pypi.python.org/pypi/tf-nightly-cpu) packages on PyPi.*",packagemanager,"[plan packagemanager]>>via pip. step1.:
```
$ pip install tensorflow
```
step2. optional. A smaller CPU-only package is also available:
```
$ pip install tensorflow-cpu
```
step3. optional.
To update TensorFlow to the latest version, add `--upgrade` flag to the above
commands.
[plan binary]>> binaries are available for testing using the
[tf-nightly](https://pypi.python.org/pypi/tf-nightly) and
[tf-nightly-cpu](https://pypi.python.org/pypi/tf-nightly-cpu) packages on PyPi.",,
transformers,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/huggingface/transformers/main/README.md,"## Installation

### With pip

This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, and TensorFlow 2.6+.

You should install __ Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).

First, create a virtual environment with the version of Python you're going to use and activate it.

Then, you will need to install at least one of Flax, PyTorch, or TensorFlow.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform.

When one of those backends has been installed, __ Transformers can be installed using pip as follows:

```bash
pip install transformers
```

If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/docs/transformers/installation#installing-from-source).

### With conda

__ Transformers can be installed using conda as follows:

```shell script
conda install conda-forge::transformers
```

> **_NOTE:_** Installing `transformers` from the `huggingface` channel is deprecated.

Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.

> **_NOTE:_**  On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062).",packagemanager,"[plan packagemanager]>>via pip:
step1. install __ Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html).(extra information) If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
step2. create a virtual environment with the version of Python you're going to use and activate it.
step3.  install at least one of Flax, PyTorch, or TensorFlow.
extrainoformation. Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform.
step4. When one of those backends has been installed, __ Transformers can be installed using pip as follows:
```bash
pip install transformers
```
extrainformation. If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/docs/transformers/installation#installing-from-source).
[plan packagemanager]>>via conda:
step1.
```shell script
conda install conda-forge::transformers
```
> **_NOTE:_** Installing `transformers` from the `huggingface` channel is deprecated.
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
> **_NOTE:_**  On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062).",,"requirements >> This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, and TensorFlow 2.6+."
langchain,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/langchain-ai/langchain/master/README.md,"## Quick Install

With pip:
```bash
pip install langchain
```

With conda:
```bash
conda install langchain -c conda-forge
```",packagemanager,"[plan packagemanager]>>step1: via pip
```bash
pip install langchain
```
[plan packagemanager]>>step1: via conda:
```bash
conda install langchain -c conda-forge
```",,
DIG/dig-stable,https://paperwithcode.com/paper/,https://raw.githubusercontent.com/divelab/DIG/dig-stable/README.md,"## Installation

### Install from pip
The key dependencies of DIG: Dive into Graphs are PyTorch (>=1.10.0), PyTorch Geometric (>=2.0.0), and RDKit.

1. Install [PyTorch](https://pytorch.org/get-started/locally/) (>=1.10.0)

```shell script
$ python -c ""import torch; print(torch.__version__)""
>>> 1.10.0
```




2. Install [PyG](https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html#) (>=2.0.0)

```shell script
$ python -c ""import torch_geometric; print(torch_geometric.__version__)""
>>> 2.0.0
```
    
3. Install DIG: Dive into Graphs.

```shell script
pip install dive-into-graphs
```


After installation, you can check the version. You have successfully installed DIG: Dive into Graphs if no error occurs.

``` shell script
$ python
>>> from dig.version import __version__
>>> print(__version__)
```

### Install from source
If you want to try the latest features that have not been released yet, you can install dig from source.

```shell script
git clone https://github.com/divelab/DIG.git
cd DIG
pip install .
```",packagemanager,"[plan packagemanager]>>step 1. Install [PyTorch](https://pytorch.org/get-started/locally/) (>=1.10.0)
```python -c ""import torch; print(torch.__version__)""
```
step2. Install [PyG](https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html#) (>=2.0.0)
```
$ python -c ""import torch_geometric; print(torch_geometric.__version__)""
``` 
step3. Install DIG: Dive into Graphs.
```
pip install dive-into-graphs
```
step4. check the version installed.
```
python
>>> from dig.version import __version__
>>> print(__version__)
```
[plan source] step1. Clone repository ```
git clone https://github.com/divelab/DIG.git
``` 
step2. move to the folder ```cd DIG```
step3. install the module ```pip install .```",,