File size: 5,154 Bytes
4c69e22 a303b26 4c69e22 7d190cb 4c69e22 7d190cb 4c69e22 7d190cb 4c69e22 1d9d61b 4c69e22 597de10 1ddf0e8 4c69e22 d8000dc 4c69e22 b32971c a15cd17 4c69e22 7d190cb 4c69e22 f1f8eec 4c69e22 7d190cb 4c69e22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
""" TweetTopicMultilingual Dataset """
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """[TweetTopicMultilingual](TBA)"""
_VERSION = "0.0.3"
_CITATION = """TBA"""
_HOME_PAGE = "https://cardiffnlp.github.io"
_NAME = "tweet_topic_multilingual"
_ROOT_URL = f"https://huggingface.co/datasets/cardiffnlp/{_NAME}/resolve/main/dataset"
_LANGUAGES = ["en", "es", "ja", "gr"]
_CLASS_MAPPING = {
"en": [
"Arts & Culture",
"Business & Entrepreneurs",
"Celebrity & Pop Culture",
"Diaries & Daily Life",
"Family",
"Fashion & Style",
"Film, TV & Video",
"Fitness & Health",
"Food & Dining",
"Learning & Educational",
"News & Social Concern",
"Relationships",
"Science & Technology",
"Youth & Student Life",
"Music",
"Gaming",
"Sports",
"Travel & Adventure",
"Other Hobbies"
],
"gr": [
"Τέχνες & Πολιτισμός",
"Επιχειρήσεις & Επιχειρηματίες",
"Διασημότητες & Ποπ κουλτούρα",
"Ημερολόγια & Καθημερινή ζωή",
"Οικογένεια",
"Μόδα & Στυλ",
"Ταινίες, τηλεόραση & βίντεο",
"Γυμναστική & Υεία",
"Φαγητό & Δείπνο",
"Μάθηση & Εκπαίδευση",
"Ειδήσεις & Κοινωνία",
"Σχέσεις",
"Επιστήμη & Τεχνολογία",
"Νεανική & Φοιτητική ζωή",
"Μουσική",
"Παιχνίδια",
"Αθλητισμός",
"Ταξίδια & Περιπέτεια",
"Άλλα χόμπι"
],
"es": [
"Arte y cultura",
"Negocios y emprendedores",
"Celebridades y cultura pop",
"Diarios y vida diaria",
"Familia",
"Moda y estilo",
"Cine, televisión y video",
"Estado físico y salud",
"Comida y comedor",
"Aprendizaje y educación",
"Noticias e interés social",
"Relaciones",
"Ciencia y Tecnología",
"Juventud y Vida Estudiantil",
"Música",
"Juegos",
"Deportes",
"Viajes y aventuras",
"Otros pasatiempos"
],
"ja": [
"アート&カルチャー",
"ビジネス",
"芸能",
"日常",
"家族",
"ファッション",
"映画&ラジオ",
"フィットネス&健康",
"料理",
"教育関連",
"社会",
"人間関係",
"サイエンス",
"学校",
"音楽",
"ゲーム",
"スポーツ",
"旅行",
"その他"
]
}
_URL = {}
# plain split
for lan in _LANGUAGES:
_URL[lan] = {split: f"{_ROOT_URL}/{lan}/{lan}_{split}.jsonl" for split in ["train", "test", "validation"]}
_URL["en_2022"] = {split: f"{_ROOT_URL}/en_2022/{split}.jsonl" for split in ["train", "validation"]}
# cross validation
for lan in _LANGUAGES:
_URL.update({
f"{lan}_cross_validation_{n}": {
split: f"{_ROOT_URL}/{lan}/cross_validation/{lan}_{split}_{n}.jsonl"
for split in ["train", "test", "validation"]
} for n in range(5)
})
class Config(datasets.BuilderConfig):
"""BuilderConfig"""
def __init__(self, **kwargs):
"""BuilderConfig.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(Config, self).__init__(**kwargs)
class TweetTopicMultilingual(datasets.GeneratorBasedBuilder):
"""Dataset."""
BUILDER_CONFIGS = [
Config(name=i, version=datasets.Version(_VERSION), description=_DESCRIPTION) for i in _URL.keys()
]
def _split_generators(self, dl_manager):
downloaded_file = dl_manager.download_and_extract(_URL[self.config.name])
splits = _URL[self.config.name].keys()
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_file[i]}) for i in splits]
def _generate_examples(self, filepath):
_key = 0
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
_list = [json.loads(i) for i in f.read().split("\n") if len(i) > 0]
for i in _list:
yield _key, i
_key += 1
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"label_name_flatten": datasets.Value("string"),
"label": datasets.Sequence(datasets.features.ClassLabel(names=_CLASS_MAPPING["en"])),
"label_name": datasets.Sequence(datasets.Value("string"))
}
),
supervised_keys=None,
homepage=_HOME_PAGE,
citation=_CITATION,
)
|