File size: 3,821 Bytes
fe9471d 4cbf956 fe9471d 4cbf956 fe9471d ec6b2dd fe9471d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
""" TweetTopic Dataset """
import json
from itertools import chain
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """[TweetTopic](TBA)"""
_VERSION = "1.0.2"
_CITATION = """
TBA
"""
_HOME_PAGE = "https://cardiffnlp.github.io"
_LABEL_TYPE = "multi"
_NAME = f"tweet_topic_{_LABEL_TYPE}"
_URL = f'https://huggingface.co/datasets/cardiffnlp/{_NAME}/raw/main/dataset'
_URLS = {
str(datasets.Split.TEST): [f'{_URL}/split_temporal/test_2021.{_LABEL_TYPE}.json'],
str(datasets.Split.TRAIN): [f'{_URL}/split_temporal/train_2020.{_LABEL_TYPE}.json'],
str(datasets.Split.VALIDATION): [f'{_URL}/split_temporal/validation_2020.{_LABEL_TYPE}.json'],
f"temporal_2020_{str(datasets.Split.TEST)}": [f'{_URL}/split_temporal/test_2020.{_LABEL_TYPE}.json'],
f"temporal_2021_{str(datasets.Split.TEST)}": [f'{_URL}/split_temporal/test_2021.{_LABEL_TYPE}.json'],
f"temporal_2020_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_temporal/train_2020.{_LABEL_TYPE}.json'],
f"temporal_2021_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_temporal/train_2021.{_LABEL_TYPE}.json'],
f"temporal_2020_{str(datasets.Split.VALIDATION)}": [f'{_URL}/split_temporal/validation_2020.{_LABEL_TYPE}.json'],
f"temporal_2021_{str(datasets.Split.VALIDATION)}": [f'{_URL}/split_temporal/validation_2021.{_LABEL_TYPE}.json'],
f"random_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_random/train_random.{_LABEL_TYPE}.json'],
f"random_{str(datasets.Split.VALIDATION)}": [f'{_URL}/split_random/validation_random.{_LABEL_TYPE}.json'],
f"coling2022_random_{str(datasets.Split.TEST)}": [f'{_URL}/split_coling2022_random/test_random.{_LABEL_TYPE}.json'],
f"coling2022_random_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_coling2022_random/train_random.{_LABEL_TYPE}.json'],
f"coling2022_temporal_{str(datasets.Split.TEST)}": [f'{_URL}/split_coling2022_temporal/test_2021.{_LABEL_TYPE}.json'],
f"coling2022_temporal_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_coling2022_temporal/train_2020.{_LABEL_TYPE}.json'],
}
class TweetTopicSingleConfig(datasets.BuilderConfig):
"""BuilderConfig"""
def __init__(self, **kwargs):
"""BuilderConfig.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(TweetTopicSingleConfig, self).__init__(**kwargs)
class TweetTopicSingle(datasets.GeneratorBasedBuilder):
"""Dataset."""
BUILDER_CONFIGS = [
TweetTopicSingleConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
]
def _split_generators(self, dl_manager):
downloaded_file = dl_manager.download_and_extract(_URLS)
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[i]}) for i in _URLS.keys()]
def _generate_examples(self, filepaths):
_key = 0
for filepath in filepaths:
logger.info(f"generating examples from = {filepath}")
with open(filepath, encoding="utf-8") as f:
_list = [i for i in f.read().split('\n') if len(i) > 0]
for i in _list:
data = json.loads(i)
yield _key, data
_key += 1
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"date": datasets.Value("string"),
"label": datasets.Sequence(datasets.Value("int32")),
"label_name": datasets.Sequence(datasets.Value("string")),
"id": datasets.Value("string")
}
),
supervised_keys=None,
homepage=_HOME_PAGE,
citation=_CITATION,
)
|