File size: 7,941 Bytes
5b95481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import argparse
import json
import logging
import os
import shutil
import urllib.request
import multiprocessing
from os.path import join as pj
import torch
import numpy as np
from huggingface_hub import create_repo
from datasets import load_dataset, load_metric
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from ray import tune
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S')
PARALLEL = bool(int(os.getenv("PARALLEL", 1)))
RAY_RESULTS = os.getenv("RAY_RESULTS", "ray_results")
def internet_connection(host='http://google.com'):
try:
urllib.request.urlopen(host)
return True
except:
return False
def get_metrics():
metric_accuracy = load_metric("accuracy", "multilabel")
metric_f1 = load_metric("f1", "multilabel")
# metric_f1.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]], average='micro')
# metric_accuracy.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]])
def compute_metric_search(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric_f1.compute(predictions=predictions, references=labels, average='micro')
def compute_metric_all(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return {
'f1': metric_f1.compute(predictions=predictions, references=labels, average='micro')['f1'],
'f1_macro': metric_f1.compute(predictions=predictions, references=labels, average='macro')['f1'],
'accuracy': metric_accuracy.compute(predictions=predictions, references=labels)['accuracy']
}
return compute_metric_search, compute_metric_all
def main():
parser = argparse.ArgumentParser(description='Fine-tuning language model.')
parser.add_argument('-m', '--model', help='transformer LM', default='roberta-base', type=str)
parser.add_argument('-d', '--dataset', help='', default='cardiffnlp/tweet_topic_multi', type=str)
parser.add_argument('--dataset-name', help='huggingface dataset name', default='citation_intent', type=str)
parser.add_argument('-l', '--seq-length', help='', default=128, type=int)
parser.add_argument('--random-seed', help='', default=42, type=int)
parser.add_argument('--eval-step', help='', default=50, type=int)
parser.add_argument('-o', '--output-dir', help='Directory to output', default='ckpt_tmp', type=str)
parser.add_argument('-t', '--n-trials', default=10, type=int)
parser.add_argument('--push-to-hub', action='store_true')
parser.add_argument('--use-auth-token', action='store_true')
parser.add_argument('--hf-organization', default=None, type=str)
parser.add_argument('-a', '--model-alias', help='', default=None, type=str)
parser.add_argument('--summary-file', default='metric_summary.json', type=str)
parser.add_argument('--skip-train', action='store_true')
parser.add_argument('--skip-eval', action='store_true')
opt = parser.parse_args()
assert opt.summary_file.endswith('.json'), f'`--summary-file` should be a json file {opt.summary_file}'
# setup data
dataset = load_dataset(opt.dataset, opt.dataset_name)
network = internet_connection()
# setup model
tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network)
model = AutoModelForSequenceClassification.from_pretrained(
opt.model,
num_labels=len(dataset['train'][0]['label']),
local_files_only=not network,
problem_type="multi_label_classification"
)
tokenized_datasets = dataset.map(
lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=opt.seq_length),
batched=True)
# setup metrics
compute_metric_search, compute_metric_all = get_metrics()
if not opt.skip_train:
# setup trainer
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir=opt.output_dir,
evaluation_strategy="steps",
eval_steps=opt.eval_step,
seed=opt.random_seed
),
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
compute_metrics=compute_metric_search,
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
opt.model, return_dict=True, num_labels=dataset['train'].features['label'].num_classes)
)
# parameter search
if PARALLEL:
best_run = trainer.hyperparameter_search(
hp_space=lambda x: {
"learning_rate": tune.loguniform(1e-6, 1e-4),
"num_train_epochs": tune.choice(list(range(1, 6))),
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
},
local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials,
resources_per_trial={'cpu': multiprocessing.cpu_count(), "gpu": torch.cuda.device_count()},
)
else:
best_run = trainer.hyperparameter_search(
hp_space=lambda x: {
"learning_rate": tune.loguniform(1e-6, 1e-4),
"num_train_epochs": tune.choice(list(range(1, 6))),
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
},
local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials
)
# finetuning
for n, v in best_run.hyperparameters.items():
setattr(trainer.args, n, v)
trainer.train()
trainer.save_model(pj(opt.output_dir, 'best_model'))
best_model_path = pj(opt.output_dir, 'best_model')
else:
best_model_path = opt.output_dir
# evaluation
model = AutoModelForSequenceClassification.from_pretrained(
best_model_path,
num_labels=dataset['train'].features['label'].num_classes,
local_files_only=not network)
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir=opt.output_dir,
evaluation_strategy="no",
seed=opt.random_seed
),
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
compute_metrics=compute_metric_all,
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
opt.model, return_dict=True, num_labels=dataset['train'].features['label'].num_classes)
)
summary_file = pj(opt.output_dir, opt.summary_file)
if not opt.skip_eval:
result = {f'test/{k}': v for k, v in trainer.evaluate().items()}
logging.info(json.dumps(result, indent=4))
with open(summary_file, 'w') as f:
json.dump(result, f)
if opt.push_to_hub:
assert opt.hf_organization is not None, f'specify hf organization `--hf-organization`'
assert opt.model_alias is not None, f'specify hf organization `--model-alias`'
url = create_repo(opt.model_alias, organization=opt.hf_organization, exist_ok=True)
# if not opt.skip_train:
args = {"use_auth_token": opt.use_auth_token, "repo_url": url, "organization": opt.hf_organization}
trainer.model.push_to_hub(opt.model_alias, **args)
tokenizer.push_to_hub(opt.model_alias, **args)
if os.path.exists(summary_file):
shutil.copy2(summary_file, opt.model_alias)
os.system(
f"cd {opt.model_alias} && git lfs install && git add . && git commit -m 'model update' && git push && cd ../")
shutil.rmtree(f"{opt.model_alias}") # clean up the cloned repo
if __name__ == '__main__':
main()
|