File size: 19,272 Bytes
d1ae506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
"""
Analyze Results | New York
Copyright (c) 2024 Cannlytics

Authors: Keegan Skeate <https://github.com/keeganskeate>
Created: 6/26/2024
Updated: 6/26/2024
License: MIT License <https://github.com/cannlytics/cannabis-data-science/blob/main/LICENSE>
"""
# Standard imports:
import base64
from datetime import datetime
import json
import os
import shutil
import tempfile
from typing import List, Optional

# External imports:
from cannlytics.data.cache import Bogart
from cannlytics.data.coas import CoADoc
from cannlytics.data.coas import standardize_results
from cannlytics.data.coas.parsing import get_coa_files, parse_coa_pdfs
from cannlytics.firebase import initialize_firebase
from cannlytics.compounds import cannabinoids, terpenes
from dotenv import dotenv_values
import pandas as pd
import pdfplumber


#-----------------------------------------------------------------------
# Find all COA PDFs.
#-----------------------------------------------------------------------

# Constants:
pdf_dir = 'D://data/new-york'

# Get all of the PDFs.
pdfs = get_coa_files(pdf_dir)
pdfs.sort(key=os.path.getmtime)
print('Found %i PDFs.' % len(pdfs))

# Initialize COA parsing.
parser = CoADoc()
cache = Bogart('D://data/.cache/results-ny.jsonl')
verbose = True
all_results = []


#-----------------------------------------------------------------------
# DEV: Identify all labs
#-----------------------------------------------------------------------

# Extract text from all PDFs.
extracted_data = []
for pdf_file in pdfs:
    try:
        with pdfplumber.open(pdf_file) as pdf:
            text = pdf.pages[0].extract_text() + '\n'
            extracted_data.append({'file': pdf_file, 'text': text})
    except:
        pass

# Find all COAs from a specific lab.
coas = {}
unidentified_coas = []
labs = [
    'Phyto-farma Labs',
    'Phyto-Farma Labs',
    'Kaycha Labs',
    'Keystone State Testing',
    'Green Analytics',
]
for data in extracted_data:
    for lab in labs:
        if lab in data['text']:
            lab_coas = coas.get(lab, [])
            lab_coas.append(data['file'])
            coas[lab] = lab_coas
            break
    else:
        unidentified_coas.append(data['file'])
print('Number of unidentified COAs:', len(unidentified_coas))

# DEV: Look at the first page of a PDF.
if unidentified_coas:
    pdf = pdfplumber.open(unidentified_coas[0])
    page = pdf.pages[0]
    im = page.to_image(resolution=300)
    im.debug_tablefinder()

# Count COAs per lab.
for lab, lab_coas in coas.items():
    print(lab, len(lab_coas))


#-----------------------------------------------------------------------
# Parse Kaycha Labs COAs.
#-----------------------------------------------------------------------

from cannlytics.data.coas.algorithms.kaycha import parse_kaycha_coa

# Parse COAs.
lab_coas = coas['Kaycha Labs']
for pdf in lab_coas:
    if not os.path.exists(pdf):
        if verbose: print(f'PDF not found: {pdf}')
        continue
    pdf_hash = cache.hash_file(pdf)
    if cache is not None:
        if cache.get(pdf_hash):
            if verbose: print('Cached:', pdf)
            all_results.append(cache.get(pdf_hash))
            continue
    try:
        coa_data = parse_kaycha_coa(parser, pdf)
        all_results.append(coa_data)
        if cache is not None: cache.set(pdf_hash, coa_data)
        print('Parsed:', pdf)
    except:
        print('Error:', pdf)


#-----------------------------------------------------------------------
# Parse Keystone State Testing COAs.
#-----------------------------------------------------------------------

from cannlytics.data.coas.algorithms.keystone import parse_keystone_coa

lab_coas = coas['Keystone State Testing']
for pdf in lab_coas:
    pdf_hash = cache.hash_file(pdf)
    if cache is not None:
        if cache.get(pdf_hash):
            if verbose: print('Cached:', pdf)
            all_results.append(cache.get(pdf_hash))
            continue
    try:
        coa_data = parse_keystone_coa(parser, pdf)
        all_results.append(coa_data)
        if cache is not None: cache.set(pdf_hash, coa_data)
        print('Parsed:', pdf)
    except Exception as e:
        print('Error:', pdf)
        print(e)


#-----------------------------------------------------------------------
# Parse Phyto-farma Labs COAs.
#-----------------------------------------------------------------------

from cannlytics.data.coas.algorithms.phytofarma import parse_phyto_farma_coa

# Parse Phyto-Farma Labs COAs.
lab_coas = coas['Phyto-Farma Labs'] + coas['Phyto-farma Labs']
for pdf in lab_coas:
    pdf_hash = cache.hash_file(pdf)
    if cache is not None:
        if cache.get(pdf_hash):
            if verbose: print('Cached:', pdf)
            all_results.append(cache.get(pdf_hash))
            continue
    try:
        coa_data = parse_phyto_farma_coa(parser, pdf)
        all_results.append(coa_data)
        if cache is not None: cache.set(pdf_hash, coa_data)
        print('Parsed:', pdf)
    except Exception as e:
        print('Error:', pdf)
        print(e)


#-----------------------------------------------------------------------
# TODO: Parse Green Analytics COAs.
#-----------------------------------------------------------------------

# lab_coas = coas['Green Analytics']
lab_coas = [
    'D://data/new-york\\NYSCannabis\\pdfs\\1c3sh5h-coa-1.pdf',
    'D://data/new-york\\NYSCannabis\\pdfs\\1cp4tdr-coa-1.pdf',
    'D://data/new-york\\NYSCannabis\\pdfs\\1c91onw-coa-1.pdf'
]


#-----------------------------------------------------------------------
# Optional: Parse the COAs with AI.
#-----------------------------------------------------------------------

def encode_image(image_path):
        """Encode an image as a base64 string."""
        with open(image_path, 'rb') as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')



#-----------------------------------------------------------------------
# TODO: Analyze results.
#-----------------------------------------------------------------------

from cannlytics.data.coas import standardize_results
from cannlytics.compounds import cannabinoids, terpenes
import matplotlib.pyplot as plt
from matplotlib.dates import MonthLocator, DateFormatter
import seaborn as sns

# Setup.
assets_dir = r'C:\Users\keega\Documents\cannlytics\cannabis-data-science\season-4\165-labels\presentation\images\figures'
plt.style.use('seaborn-v0_8-whitegrid')
plt.rcParams.update({
    'font.family': 'Times New Roman',
    'font.size': 24,
})


def format_date(x, pos):
    try:
        return pd.to_datetime(x).strftime('%b %d, %Y')
    except ValueError:
        return ''


# Read results.
cache = Bogart('D://data/.cache/results-ny.jsonl')
results = cache.to_df()
print('Number of results:', len(results))

# Standardize results.
compounds = list(cannabinoids.keys()) + list(terpenes.keys())
# # DEV:
# compounds = [
#     'delta_9_thc',
#     'thca',
#     'alpha_humulene',
#     'beta_caryophyllene',
#     'beta_pinene',
#     'd_limonene',
# ]
results['date'] = pd.to_datetime(results['date_tested'], format='mixed')
results['week'] = results['date'].dt.to_period('W').astype(str)
results['month'] = results['date'].dt.to_period('M').astype(str)
results = standardize_results(results, compounds)

# Sort the results by date.
results = results.sort_values('date')

# TODO: Look at values of any terpenes not yet observed.


#-----------------------------------------------------------------------
# Lab analysis
#-----------------------------------------------------------------------

# # FIXME: Visualize the number of results by lab over time.
# weekly_tests = results.groupby(['week', 'lab']).size().reset_index(name='count')
# pivot_table = weekly_tests.pivot_table(values='count', index='week', columns='lab', aggfunc='sum').fillna(0)
# plt.figure(figsize=(15, 8))
# colors = sns.color_palette('tab20', n_colors=len(pivot_table.columns))
# bottom = pd.Series([0] * len(pivot_table.index), index=pivot_table.index)
# for lab, color in zip(pivot_table.columns, colors):
#     plt.bar(
#         pivot_table.index,
#         pivot_table[lab],
#         bottom=bottom,
#         label=lab,
#         color=color,
#         edgecolor='grey',  # Add border
#         alpha=0.8,  # Add transparency
#     )
#     bottom += pivot_table[lab]
# plt.title('Number of Lab Results by Lab', pad=10)
# plt.xlabel('Week')
# plt.ylabel('Number of Results')
# plt.xticks(rotation=45)
# ticks = plt.gca().get_xticks()
# plt.gca().set_xticks(ticks[::4])  # Show every 4th xtick
# plt.legend(loc='upper right', title='Lab', ncol=2)
# plt.tight_layout()
# plt.savefig(os.path.join(assets_dir, 'lab-timeseries.png'))
# plt.show()

# This one is good:
sample = results.dropna(subset=['date'])
plt.figure(figsize=(18, 8))
ax = sns.countplot(data=sample, x='week', hue='lab', palette='tab10')
plt.title('Number of Lab Results by Lab', pad=10)
plt.xlabel('')
plt.ylabel('Number of Results')
plt.xticks(rotation=45)
ticks = ax.get_xticks()
ax.set_xticks(ticks[::4])
ax.set_xticklabels([format_date(item.get_text(), None) for item in ax.get_xticklabels()])
plt.legend(loc='upper right')
plt.tight_layout()
plt.savefig(os.path.join(assets_dir, 'lab-timeseries.png'))
plt.show()


#-----------------------------------------------------------------------
# Producer analysis
#-----------------------------------------------------------------------

# Assign standard producer names.
producer_names = {
    'Hudson Valley Cannabis LLC': 'Hudson Cannabis',
    'MFNY Processor LLC': 'MFNY',
    '': 'Unknown',
    'Hepworth Ag, INC': 'Hepworth Ag',
    'Processing': 'Unknown',
    'MFNY PROCESSOR LLC': 'MFNY',
    'Hudson Valley Hemp Company': 'Hudson Cannabis',
    'Hepworth Ag, Inc.': 'Hepworth Ag',
    'NYHO Labs LLC': 'NYHO Labs',
    'Hudson Valley Hemp Company, LLC': 'Hudson Cannabis',
    'Cirona Labs': 'Cirona Labs',
    'Hudson Cannabis c/o Hudson Valley Hemp Company, LLC': 'Hudson Cannabis',
    'Milton, NY, 12547, US': 'Unknown',
}
results['producer_dba'] = results['producer'].map(producer_names)

# FIXME: Visualize the number of results by producer over time.
# results['week'] = results['date'].dt.to_period('W').dt.start_time
# weekly_tests = results.groupby(['week', 'dba']).size().reset_index(name='count')
# pivot_table = weekly_tests.pivot_table(values='count', index='week', columns='dba', aggfunc='sum').fillna(0)
# plt.figure(figsize=(21, 9))
# colors = sns.color_palette('tab20', n_colors=len(pivot_table.columns))
# bottom = None
# for dba, color in zip(pivot_table.columns, colors):
#     plt.bar(
#         pivot_table.index,
#         pivot_table[dba],
#         bottom=bottom,
#         label=dba,
#         color=color,
#         edgecolor='grey',  # Add border
#         alpha=0.8,  # Add transparency
#     )
#     if bottom is None:
#         bottom = pivot_table[dba]
#     else:
#         bottom += pivot_table[dba]
# plt.title('Number of Lab Results by Producer', pad=10)
# plt.xlabel('Week')
# plt.ylabel('Number of Results')
# plt.xticks(rotation=45)
# ticks = plt.gca().get_xticks()
# plt.gca().set_xticks(ticks[::4])  # Show every 4th xtick
# plt.legend(loc='upper right', title='Producer', ncol=2)
# plt.tight_layout()
# plt.savefig(os.path.join(assets_dir, 'producer-timeseries.png'))
# plt.show()

# This one is good.
sample = results.dropna(subset=['date'])
plt.figure(figsize=(18, 8))
ax = sns.countplot(data=sample, x='week', hue='producer_dba', palette='tab10')
plt.title('Number of Lab Results by Producer', pad=10)
plt.xlabel('')
plt.ylabel('Number of Results')
plt.xticks(rotation=45)
ticks = ax.get_xticks()
ax.set_xticks(ticks[::4])
ax.set_xticklabels([format_date(item.get_text(), None) for item in ax.get_xticklabels()])
plt.legend(loc='upper right')
plt.tight_layout()
plt.savefig(os.path.join(assets_dir, 'producer-timeseries.png'))
plt.show()


#-----------------------------------------------------------------------
# Product type analysis
#-----------------------------------------------------------------------

# Assign product types.
flower_types = [
    'Plant, Flower - Cured',
    'Flower',
]
preroll_types = [
    'Plant, Preroll',
]
infused_preroll_types = [
    'Plant, Enhanced Preroll',
]
concentrate_types = [
    'Concentrate',
    'Derivative',
    'Concentrates & Extract, Vape Cartridge',
    'Concentrates & Extract, Live Rosin',
    'Concentrates & Extract, Concentrate',
    'Concentrates & Extract, Rosin',
    'Concentrates & Extract, Distillate'
]
edible_types = [
    'Edible',
    'Ingestible, Gummy',
    'Ingestible, Edibles',
]


def assign_product_type(x):
    if x in flower_types:
        return 'Flower'
    if x in concentrate_types:
        return 'Concentrate'
    if x in edible_types:
        return 'Edible'
    if x in preroll_types:
        return 'Preroll'
    if x in infused_preroll_types:
        return 'Infused Preroll'
    return 'Other'


# Assign standard product type.
results['standard_product_type'] = results['product_type'].apply(assign_product_type)

# Define a consistent color palette.
product_type_palette = {
    'Flower': '#2ca02c',        # green
    'Concentrate': '#ff7f0e',   # orange
    'Edible': '#8c564b',        # brown
    'Preroll': '#1f77b4',       # blue
    'Infused Preroll': '#9467bd', # purple
    'Other': '#d62728'          # red
}

# Visualize the number of results by product type over time
sample = results.dropna(subset=['date'])
sample.sort_values('date', inplace=True)
plt.figure(figsize=(18, 8))
ax = sns.countplot(data=sample, x='week', hue='standard_product_type', palette=product_type_palette)
plt.title('Number of Lab Results by Product Type', pad=10)
plt.xlabel('')
plt.ylabel('Number of Results')
plt.xticks(rotation=45)
ticks = ax.get_xticks()
ax.set_xticks(ticks[::4])
# FIXME:
ax.set_xticklabels([format_date(item.get_text(), None) for item in ax.get_xticklabels()])
plt.legend(loc='upper right')
plt.tight_layout()
plt.savefig(os.path.join(assets_dir, 'product-type-timeseries.png'))
plt.show()

# Visualize the proportions of product types in a pie chart
plt.figure(figsize=(12, 12))
results['standard_product_type'].value_counts().plot.pie(
    autopct='%1.1f%%',
    startangle=90,
    colors=[product_type_palette[key] for key in results['standard_product_type'].value_counts().index]
)
plt.title('Proportions of Product Types')
plt.ylabel('')
plt.tight_layout()
plt.savefig(os.path.join(assets_dir, 'product-type-pie.png'))
plt.show()

# Visualize total cannabinoids and total terpenes in a scatter plot
sample = results.loc[results['standard_product_type'] != 'Other']
plt.figure(figsize=(18, 8))
ax = sns.scatterplot(
    data=sample,
    y='total_cannabinoids',
    x='total_terpenes',
    hue='standard_product_type',
    palette=product_type_palette,
    s=200
)
plt.title('Total Cannabinoids to Total Terpenes', pad=10)
plt.ylabel('Total Cannabinoids (%)')
plt.xlabel('Total Terpenes (%)')
plt.xlim(0, 10.5)
plt.ylim(0, 100)
legend = ax.legend(title='Product Type', bbox_to_anchor=(1.05, 1), loc='upper left')
for leg_entry in legend.legendHandles:
    leg_entry.set_sizes([200])
plt.tight_layout()
plt.savefig(os.path.join(assets_dir, 'cannabinoids-to-terpenes.png'))
plt.show()


# Optional: Visualize total THC to CBD.


#-----------------------------------------------------------------------
# Timeseries analysis.
#-----------------------------------------------------------------------

import statsmodels.api as sm

# Look at the trend in THCA in flower.
compound = 'thca'
sample = results[results['standard_product_type'] == 'Flower']
avg = results.groupby(['month', 'standard_product_type'])[compound].mean().reset_index()
avg['month'] = pd.to_datetime(avg['month'], errors='coerce')
flower_data = avg[avg['standard_product_type'] == 'Flower']
flower_data = flower_data.dropna(subset=[compound, 'month'])
flower_data['month_num'] = range(len(flower_data))
X = sm.add_constant(flower_data['month_num'])
y = flower_data[compound]
model = sm.OLS(y, X).fit()
slope = model.params['month_num']
direction = '+' if slope > 0 else '-'
plt.figure(figsize=(13, 8))
plt.plot(flower_data['month'], flower_data[compound], 'bo-', label='Avg. THCA by month', linewidth=2)
plt.plot(flower_data['month'], model.predict(X), 'r-', label=f'Trend: {direction}{slope:.2f}% per month', linewidth=2)
plt.scatter(sample['date'], sample[compound], color='lightblue', s=80)
plt.title('Trend of THCA in Flower in New York', pad=10)
plt.xlabel('')
plt.ylabel('THCA')
plt.legend()
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig(os.path.join(assets_dir, 'average-thca-by-month.png'))
plt.show()

                                                                                                                                       
#-----------------------------------------------------------------------
#  Visualize terpene ratios.
#-----------------------------------------------------------------------

# Function to create scatter plots
def create_scatter_plot(x_col, y_col, title, x_label, y_label, filename):
    plt.figure(figsize=(18, 8))
    ax = sns.scatterplot(
        data=results,
        x=x_col,
        y=y_col,
        hue='standard_product_type',
        palette=product_type_palette,
        s=200
    )
    plt.title(title, pad=10)
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    legend = ax.legend(title='Product Type', bbox_to_anchor=(1.05, 1), loc='upper left')
    for leg_entry in legend.legendHandles:
        leg_entry.set_sizes([200])
    plt.tight_layout()
    plt.savefig(os.path.join(assets_dir, filename))
    plt.show()


# Visualize the ratio of `alpha_humulene` to `beta_caryophyllene`
create_scatter_plot(
    y_col='alpha_humulene',
    x_col='beta_caryophyllene',
    title='Ratio of Alpha-Humulene to Beta-Caryophyllene by Product Type',
    y_label='Alpha-Humulene',
    x_label='Beta-Caryophyllene',
    filename='alpha_humulene_to_beta_caryophyllene.png'
)

# Visualize the ratio of `beta_pinene` to `d_limonene`
create_scatter_plot(
    y_col='beta_pinene',
    x_col='d_limonene',
    title='Ratio of Beta-Pinene to D-Limonene by Product Type',
    y_label='Beta-Pinene',
    x_label='D-Limonene',
    filename='beta_pinene_to_d_limonene.png'
)


#-----------------------------------------------------------------------
# Regression analysis on THCA.
#-----------------------------------------------------------------------

from patsy import dmatrices

# Run a regression on THCA in flower.
compound = 'thca'
product_type = 'Flower'
sample = results[results['standard_product_type'] == product_type]
sample['month'] = pd.to_datetime(sample['month'], errors='coerce')
sample = sample.dropna(subset=['month'])
sample['month_num'] = sample['month'].rank(method='dense').astype(int) - 1
y, X = dmatrices('thca ~ month_num + C(lab) + C(dba)', data=sample, return_type='dataframe')
model = sm.OLS(y, X).fit()
print(model.summary().as_latex())


#-----------------------------------------------------------------------
# TODO: Save the results.
#-----------------------------------------------------------------------

# Save the results.
last_test_date = results['date'].max().strftime('%Y-%m-%d')
outfile = f'D://data/new-york/ny-results-{last_test_date}.xlsx'
results.to_excel(outfile, index=False)
print('Saved:', outfile)