File size: 5,643 Bytes
9bfab44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
from pathlib import Path
from typing import Dict, List, Tuple

from dataclasses import dataclass

import datasets
import json
import xml.etree.ElementTree as ET


_CITATION = """\
@article{nuranti2022predicting,
  title={Predicting the Category and the Length of Punishment in Indonesian Courts Based on Previous Court Decision Documents},
  author={Nuranti, Eka Qadri and Yulianti, Evi and Husin, Husna Sarirah},
  journal={Computers},
  volume={11},
  number={6},
  pages={88},
  year={2022},
  publisher={Multidisciplinary Digital Publishing Institute}
}
"""

_LANGUAGES = ["id"]
_LOCAL = False

_DATASETNAME = "indo_law"

_DESCRIPTION = """\
This study presents predictions of first-level judicial decisions by utilizing a collection of Indonesian court decision documents. 
We propose using multi-level learning, namely, CNN+attention, using decision document sections as features to predict the category and the length of punishment in Indonesian courts. 
Our results demonstrate that the decision document sections that strongly affected the accuracy of the prediction model were prosecution history, facts, legal facts, and legal considerations.
"""

_HOMEPAGE = ""

_LICENSE = "Unknown"

_URLS = {
    _DATASETNAME: "https://github.com/ir-nlp-csui/indo-law/zipball/master",
}

_SOURCE_VERSION = "1.0.0"



@dataclass
class IndoLawConfig(datasets.BuilderConfig):

    name: str = None
    version: datasets.Version = None
    description: str = None
    schema: str = None
    subset_id: str = None

class IndoLaw(datasets.GeneratorBasedBuilder):
    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)


    _LABELS = ["pidana-khusus", "pidana-umum"]

    BUILDER_CONFIGS = [
        IndoLawConfig(
            name="indo_law_source",
            version=SOURCE_VERSION,
            description="Indo-Law source schema",
            schema="source",
            subset_id="indo_law",
        ),
        IndoLawConfig(
            name="indo_law_nusantara_text",
            version=SOURCE_VERSION,
            description="Indo-Law Nusantara schema",
            schema="nusantara_text",
            subset_id="indo_law",
        ),
    ]

    DEFAULT_CONFIG_NAME = "indo_law_source"

    def _get_features(self, label_names):
        return datasets.Features(
            {
                "id": datasets.Value("string"),
                "text": datasets.Value("string"),
                "label": datasets.ClassLabel(names=label_names),
            }
        )

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "klasifikasi": datasets.Value("string"),
                    "sub_klasifikasi": datasets.Value("string"),
                    "paragraphs": datasets.Sequence({
                        "tag": datasets.Value("string"),
                        "value": datasets.Value("string"),
                    }),
                }
            )

        elif self.config.schema == "nusantara_text":
            features = self._get_features(self._LABELS)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[
        datasets.SplitGenerator]:
        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        data_dir = os.path.join(data_dir, "ir-nlp-csui-indo-law-6734033", "dataset")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir,
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        files = os.listdir(filepath)

        results = []

        for file in files:
            data = self._parse_file(os.path.join(filepath, file))
            results.append(data)

        if self.config.schema == "source":
            key = 0
            for result in results:
                example = {
                    "id": result["id"],
                    "klasifikasi": result["klasifikasi"],
                    "sub_klasifikasi": result["klasifikasi"],
                    "paragraphs": [],
                }
                for tag in result["paragraphs"]:
                    example["paragraphs"].append({
                        "tag": tag,
                        "value": result["paragraphs"][tag]
                    })
                yield key, example
                key += 1

        elif self.config.schema == "nusantara_text":
            key = 0
            for result in results:
                example = {
                    "id": result["id"],
                    "text": json.dumps(result["paragraphs"]),
                    "label": result["klasifikasi"],
                }
                yield key, example
                key += 1

    def _parse_file(self, file_path):
        root = ET.parse(file_path).getroot()

        data = {
            "id": root.attrib["id"],
            "klasifikasi": root.attrib["klasifikasi"],
            "sub_klasifikasi": root.attrib["sub_klasifikasi"],
            "paragraphs": {}
        }

        for child in root:
            data["paragraphs"].update({
                child.tag: child.text
            })

        return data