Datasets:

ArXiv:
License:
snow-mountain / README.md
anjalyjayakrishnan's picture
updated dataset card
e9c1cc5
|
raw
history blame
6.95 kB
metadata
pretty_name: Snow Mountain
language:
  - hi
  - bgc
  - kfs
  - dgo
  - bhd
  - gbk
  - xnr
  - kfx
  - mjl
  - kfo
  - bfz
annotations_creators:
  - 'null': null
language_creators:
  - 'null': null
license: []
multilinguality:
  - multilingual
size_categories:
  - null
source_datasets:
  - Snow Mountain
tags: []
task_categories:
  - automatic-speech-recognition
task_ids: []
configs:
  - hi
  - bgc
dataset_info:
  - config_name: hi
    features:
      - name: Unnamed
        dtype: int64
      - name: sentence
        dtype: string
      - name: path
        dtype: string
    splits:
      - name: train_500
        num_examples: 400
      - name: val_500
        num_examples: 100
      - name: train_1000
        num_examples: 800
      - name: val_1000
        num_examples: 200
      - name: test_common
        num_examples: 500
    dataset_size: 71.41 hrs
  - config_name: bgc
    features:
      - name: Unnamed
        dtype: int64
      - name: sentence
        dtype: string
      - name: path
        dtype: string
    splits:
      - name: train_500
        num_examples: 400
      - name: val_500
        num_examples: 100
      - name: train_1000
        num_examples: 800
      - name: val_1000
        num_examples: 200
      - name: test_common
        num_examples: 500
    dataset_size: 27.41 hrs

Dataset Card for [snow-mountain]

Table of Contents

Dataset Description

Dataset Summary

The Snow Mountain dataset contains the audio recordings (in .mp3 format) and the corresponding text of The Bible in 11 Indian languages. The recordings were done in a studio setting by native speakers. Each language has a single speaker in the dataset. Most of these languages are geographically concentrated in the Northern part of India around the state of Himachal Pradesh. Being related to Hindi they all use the Devanagari script for transcription.

We have used this dataset for experiments in ASR tasks. But these could be used for other applications in speech domain, like speaker recognition, language identification or even as unlabelled corpus for pre-training.

Supported Tasks and Leaderboards

Atomatic speech recognition, Speaker recognition, Language identification

Languages

Hindi, Haryanvi, Bilaspuri, Dogri, Bhadrawahi, Gaddi, Kangri, Kulvi, Mandeali, Kulvi Outer Seraji, Pahari Mahasui

Dataset Structure

data
  |- cleaned
    |- lang1
      |- book1_verse_audios.tar.gz
      |- book2_verse_audios.tar.gz
        ...
        ...
      |- all_verses.csv
      |- short_verses.csv 
    |- lang2
      ...
      ...   
  |- experiments 
    |- lang1
      |- train_500.csv
      |- val_500.csv
      |- test_common.csv
        ...
        ...
    |- lang2
      ...
      ...
  |- raw
    |- lang1
      |- chapter1_audio.mp3
      |- chapter2_audio.mp3
        ...
        ...
      |- text
        |- book1.csv
        |- book1.usfm
          ...
          ...
    |- lang2
      ...
      ...

Data Instances

A typical data point comprises the path to the audio file, usually called path and its transcription, called sentence.

{'sentence': 'क्यूँके तू अपणी बात्तां कै कारण बेकसूर अर अपणी बात्तां ए कै कारण कसूरवार ठहराया जावैगा',
 'audio': {'path': 'data/cleaned/haryanvi/MAT/MAT_012_037.wav',
  'array': array([0., 0., 0., ..., 0., 0., 0.]),
  'sampling_rate': 16000},
 'path': 'data/cleaned/haryanvi/MAT/MAT_012_037.wav'}

Data Fields

path: The path to the audio file

audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: dataset[0]["audio"] the audio file is automatically decoded and resampled to dataset.features["audio"].sampling_rate. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the "audio" column, i.e. dataset[0]["audio"] should always be preferred over dataset["audio"][0].

sentence: the transcription of the audio file.

Data Splits

We create splits of the cleaned data for training and analysing the performance of ASR models. The splits are available in the experiments directory. The file names indicate the experiment and the split category.

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

The Bible recordings were done in a studio setting by native speakers.

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

The data is licensed under the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)

Citation Information

@inproceedings{Raju2022SnowMD, title={Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages}, author={Kavitha Raju and V. Anjaly and R. Allen Lish and Joel Mathew}, year={2022} }

Contributions

Thanks to @github-username for adding this dataset.