Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Dataset Card for [Dataset Name]

Dataset Summary

Brand-Product Relation Extraction Corpora in Polish

Supported Tasks and Leaderboards

NER, Entity linking

Languages

Polish

Dataset Structure

Data Instances

[More Information Needed]

Data Fields

  • id: int identifier of a text
  • text: string text, for example a consumer comment on the social media
  • ner: extracted entities and their relationship
    • source and target: a pair of entities identified in the text
      • from: int value representing starting character of the entity
      • text: string value with the entity text
      • to: int value representing end character of the entity
      • type: one of pre-identified entity types:
        • PRODUCT_NAME
        • PRODUCT_NAME_IMP
        • PRODUCT_NO_BRAND
        • BRAND_NAME
        • BRAND_NAME_IMP
        • VERSION
        • PRODUCT_ADJ
        • BRAND_ADJ
        • LOCATION
        • LOCATION_IMP

Data Splits

No train/validation/test split provided. Current dataset configurations point to 4 domain categories for the texts:

  • tele
  • electro
  • cosmetics
  • banking

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

@inproceedings{inproceedings,
author = {Janz, Arkadiusz and Kopociński, Łukasz and Piasecki, Maciej and Pluwak, Agnieszka},
year = {2020},
month = {05},
pages = {},
title = {Brand-Product Relation Extraction Using Heterogeneous Vector Space Representations}
}

Contributions

Thanks to @kldarek for adding this dataset.

Downloads last month
126