Datasets:
license: cc-by-nc-sa-4.0
task_categories:
- image-text-to-image
language:
- en
pretty_name: icir
size_categories:
- 100K<n<1M
i-CIR Dataset (Hugging Face)
About
i-CIR (Instance-Level Composed Image Retrieval) is a curated benchmark for composed image retrieval where each instance corresponds to a specific, visually indistinguishable object (e.g., a particular landmark). Each query combines an image of the instance with a text modification, and retrieval is evaluated against a database containing rich hard negatives (visual / textual / compositional).
Key stats
- Instances: 202
- Total images: ~750K
- Composed queries: 1,883
- Avg database size / query: ~3.7K images
- Includes challenging hard negatives per instance.
Dataset Structure
On Hugging Face, i-CIR is hosted as WebDataset shards for scalable/robust downloads and streaming.
icir/
βββ webdataset/
β βββ query/
β β βββ query-000000.tar
β β βββ query-000001.tar
β β βββ ...
β βββ database/
β βββ database-000000.tar
β βββ database-000001.tar
β βββ ...
βββ annotations/
β βββ query_files.csv
β βββ database_files.csv
βββ VERSION.txt
βββ LICENSE
Annotations format
- query_files.csv: each row is (image_path, text_query, instance_id)
- database_files.csv: each row is (image_path, text_query, instance_id) (the text field may be unused for database features depending on the pipeline)
Inside each WebDataset sample, we store:
- an image (.jpg/.png/...)
- a json payload with: img_path, text, instance
Download
One-liner download (recommended):
pip install -U huggingface_hub
huggingface-cli download billpsomas/icir --repo-type dataset --local-dir ./data/icir --revision main
Python (equivalent):
from huggingface_hub import snapshot_download
snapshot_download(repo_id="billpsomas/icir", repo_type="dataset", local_dir="./data/icir", revision="main")
Using the dataset (feature extraction)
You can extract features directly from the WebDataset shards (no image folder extraction needed):
python3 create_features.py \
--dataset icir \
--icir_source wds \
--icir_wds_root ./data/icir \
--backbone clip \
--batch 512 \
--gpu 0
License
The dataset is released under CC BY-NC-SA 4.0. Please see LICENSE for details.
Citation
If you use i-CIR in your research, please cite:
@inproceedings{
psomas2025instancelevel,
title={Instance-Level Composed Image Retrieval},
author={Bill Psomas and George Retsinas and Nikos Efthymiadis and Panagiotis Filntisis and Yannis Avrithis and Petros Maragos and Ondrej Chum and Giorgos Tolias},
booktitle={The Thirty-ninth Annual Conference on Neural Information Processing Systems},
year={2025}
}