Datasets:

Modalities:
Image
Text
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 9,119 Bytes
627ad4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e33d10
627ad4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e33d10
 
 
 
 
 
 
 
 
 
627ad4b
 
 
8e33d10
 
 
 
627ad4b
 
8e33d10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627ad4b
8e33d10
627ad4b
 
 
 
 
 
 
 
 
 
8e33d10
 
 
627ad4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e33d10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627ad4b
 
 
 
8e33d10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627ad4b
8e33d10
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script for reading 'Object Detection for Chess Pieces' dataset."""


import os
from glob import glob
from re import L

import datasets
from PIL import Image

_CITATION = """\
    @dataset{clerice_thibault_2022_6827706,
  author       = {Clérice, Thibault},
  title        = {YALTAi: Tabular Dataset},
  month        = jul,
  year         = 2022,
  publisher    = {Zenodo},
  version      = {1.0.0},
  doi          = {10.5281/zenodo.6827706},
  url          = {https://doi.org/10.5281/zenodo.6827706}
}
"""

_DESCRIPTION = """TODO"""

_HOMEPAGE = "https://doi.org/10.5281/zenodo.6827706"

_LICENSE = "Creative Commons Attribution 4.0 International"

_URL = "https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1"

_CATEGORIES = ["Header", "Col", "Marginal", "text"]


class YaltAiTabularDatasetConfig(datasets.BuilderConfig):
    """BuilderConfig for YaltAiTabularDataset."""

    def __init__(self, name, **kwargs):
        """BuilderConfig for YaltAiTabularDataset."""
        super(YaltAiTabularDatasetConfig, self).__init__(
            version=datasets.Version("1.0.0"), name=name, description=None, **kwargs
        )


class YaltAiTabularDataset(datasets.GeneratorBasedBuilder):
    """Object Detection for historic manuscripts"""

    BUILDER_CONFIGS = [
        YaltAiTabularDatasetConfig("YOLO"),
        YaltAiTabularDatasetConfig("COCO"),
    ]

    def _info(self):
        if self.config.name == "COCO":
            features = datasets.Features(
                {
                    "image_id": datasets.Value("int64"),
                    "image": datasets.Image(),
                    "width": datasets.Value("int32"),
                    "height": datasets.Value("int32"),
                    #   "url": datasets.Value("string"),
                }
            )
            object_dict = {
                "category_id": datasets.ClassLabel(names=_CATEGORIES),
                "image_id": datasets.Value("string"),
                "id": datasets.Value("int64"),
                "area": datasets.Value("int64"),
                "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                "segmentation": [[datasets.Value("float32")]],
                "iscrowd": datasets.Value("bool"),
            }
            features["objects"] = [object_dict]
        if self.config.name == "YOLO":
            features = datasets.Features(
                {
                    # "image_id": datasets.Value("int32"),
                    "image": datasets.Image(),
                    "objects": datasets.Sequence(
                        {
                            "label": datasets.ClassLabel(names=_CATEGORIES),
                            "bbox": datasets.Sequence(
                                datasets.Value("int32"), length=4
                            ),
                        }
                    ),
                }
            )
        return datasets.DatasetInfo(
            features=features,
            supervised_keys=None,
            description=_DESCRIPTION,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_dir": os.path.join(data_dir, "yaltai-table/", "train")
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"data_dir": os.path.join(data_dir, "yaltai-table/", "val")},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_dir": os.path.join(data_dir, "yaltai-table/", "test")
                },
            ),
        ]

    def _generate_examples(self, data_dir):
        def create_annotation_from_yolo_format(
            min_x,
            min_y,
            width,
            height,
            image_id,
            category_id,
            annotation_id,
            segmentation=False,
        ):
            bbox = (float(min_x), float(min_y), float(width), float(height))
            area = width * height
            max_x = min_x + width
            max_y = min_y + height
            if segmentation:
                seg = [[min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]]
            else:
                seg = []
            return {
                "id": annotation_id,
                "image_id": image_id,
                "bbox": bbox,
                "area": area,
                "iscrowd": 0,
                "category_id": category_id,
                "segmentation": seg,
            }

        image_dir = os.path.join(data_dir, "images")
        label_dir = os.path.join(data_dir, "labels")
        image_paths = sorted(glob(f"{image_dir}/*.jpg"))
        label_paths = sorted(glob(f"{label_dir}/*.txt"))
        if self.config.name == "COCO":
            for idx, (image_path, label_path) in enumerate(
                zip(image_paths, label_paths)
            ):
                image_id = idx
                annotations = []
                image = Image.open(image_path)  # .convert("RGB")
                w, h = image.size
                with open(label_path, "r") as f:
                    lines = f.readlines()
                for line in lines:
                    line = line.strip().split()
                    # logger.warn(line)
                    category_id = line[
                        0
                    ]  # int(line[0]) + 1  # you start with annotation id with '1'
                    x_center = float(line[1])
                    y_center = float(line[2])
                    width = float(line[3])
                    height = float(line[4])

                    float_x_center = w * x_center
                    float_y_center = h * y_center
                    float_width = w * width
                    float_height = h * height

                    min_x = int(float_x_center - float_width / 2)
                    min_y = int(float_y_center - float_height / 2)
                    width = int(float_width)
                    height = int(float_height)

                    annotation = create_annotation_from_yolo_format(
                        min_x,
                        min_y,
                        width,
                        height,
                        image_id,
                        category_id,
                        image_id,
                        #  segmentation=opt.box2seg,
                    )
                    annotations.append(annotation)
                    # annotation_id += 1

                # image_id += 1  # if you finished annotation work, updates the image id.
                example = {
                    "image_id": image_id,
                    "image": image,
                    "width": w,
                    "height": h,
                    "objects": annotations,
                }
                yield idx, example
        if self.config.name == "YOLO":
            for idx, (image_path, label_path) in enumerate(
                zip(image_paths, label_paths)
            ):
                im = Image.open(image_path)
                width, height = im.size
                image_id = idx
                annotations = []
                with open(label_path, "r") as f:
                    lines = f.readlines()
                objects = []
                for line in lines:
                    line = line.strip().split()
                    bbox_class = int(line[0])
                    bbox_xcenter = int(float(line[1]) * width)
                    bbox_ycenter = int(float(line[2]) * height)
                    bbox_width = int(float(line[3]) * width)
                    bbox_height = int(float(line[4]) * height)
                    objects.append(
                        {
                            "label": bbox_class,
                            "bbox": [
                                bbox_xcenter,
                                bbox_ycenter,
                                bbox_width,
                                bbox_height,
                            ],
                        }
                    )

                yield idx, {
                    "image": image_path,
                    "objects": objects,
                }