Datasets:

Modalities:
Image
Text
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 14,412 Bytes
21d0c0d
fb7df5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d0c0d
fb7df5f
514b56b
fb7df5f
 
514b56b
fb7df5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b28e5a0
 
fb7df5f
 
 
ab392dc
fb7df5f
 
 
ab392dc
fb7df5f
 
 
 
ab392dc
 
 
 
 
fb7df5f
 
 
 
92b7b16
 
fb7df5f
92b7b16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb7df5f
 
1f5103d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb7df5f
 
1f5103d
fb7df5f
 
ab392dc
 
 
 
 
 
 
 
fb7df5f
ab392dc
 
 
 
4a1a055
ab392dc
 
 
 
4a1a055
fb7df5f
 
ab392dc
fb7df5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a56da
fb7df5f
c5a56da
 
 
 
 
 
 
 
 
fb7df5f
 
 
8be4189
fb7df5f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
---
annotations_creators:
- expert-generated
language: []
language_creators:
- expert-generated
license:
- cc-by-4.0
multilinguality: []
pretty_name: YALTAi Tabular Dataset
size_categories:
- n<1K
source_datasets: []
tags:
- manuscripts
- lam
task_categories:
- object-detection
task_ids: []
---

# YALTAi Tabular Dataset

## Table of Contents
- [YALTAi Tabular Dataset](#YALTAi-Tabular-Dataset)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://doi.org/10.5281/zenodo.6827706](https://doi.org/10.5281/zenodo.6827706) 
- **Paper:** [https://arxiv.org/abs/2207.11230](https://arxiv.org/abs/2207.11230)

### Dataset Summary

This dataset contains a subset of data used in the paper [You Actually Look Twice At it (YALTAi): using an object detectionapproach instead of region segmentation within the Kraken engine](https://arxiv.org/abs/2207.11230). This paper proposes treating page layout recognition on historical documents as an object detection task (compared to the usual pixel segmentation approach). This dataset covers pages with tabular information with the following objects "Header", "Col", "Marginal", "text". 

### Supported Tasks and Leaderboards

- `object-detection`: This dataset can be used to train a model for object-detection on historic document images. 


## Dataset Structure

This dataset has two configurations. These configurations both cover the same data and annotations but provide these annotations in different forms to make it easier to intergrate the data with existing processing pipelines. 

- The first configuration `YOLO` uses the original format of the data. 
- The second configuration converts the YOLO format into a format which is closer to the `COCO` annotation format. This is done in particular to make it easier to work with the `feature_extractor`s from the `Transformers` models for object detection which expect data to be in a COCO style format. 

### Data Instances

Provide an JSON-formatted example and brief description of a typical instance in the dataset. If available, provide a link to further examples.

An example instance from the COCO config:

```
{'height': 2944,
 'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=2064x2944 at 0x7FA413CDA210>,
 'image_id': 0,
 'objects': [{'area': 435956,
   'bbox': [0.0, 244.0, 1493.0, 292.0],
   'category_id': 0,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 88234,
   'bbox': [305.0, 127.0, 562.0, 157.0],
   'category_id': 2,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 5244,
   'bbox': [1416.0, 196.0, 92.0, 57.0],
   'category_id': 2,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 5720,
   'bbox': [1681.0, 182.0, 88.0, 65.0],
   'category_id': 2,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 374085,
   'bbox': [0.0, 540.0, 163.0, 2295.0],
   'category_id': 1,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 577599,
   'bbox': [104.0, 537.0, 253.0, 2283.0],
   'category_id': 1,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 598670,
   'bbox': [304.0, 533.0, 262.0, 2285.0],
   'category_id': 1,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 56,
   'bbox': [284.0, 539.0, 8.0, 7.0],
   'category_id': 1,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 1868412,
   'bbox': [498.0, 513.0, 812.0, 2301.0],
   'category_id': 1,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 307800,
   'bbox': [1250.0, 512.0, 135.0, 2280.0],
   'category_id': 1,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 494109,
   'bbox': [1330.0, 503.0, 217.0, 2277.0],
   'category_id': 1,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 52,
   'bbox': [1734.0, 1013.0, 4.0, 13.0],
   'category_id': 1,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []},
  {'area': 90666,
   'bbox': [0.0, 1151.0, 54.0, 1679.0],
   'category_id': 1,
   'id': 0,
   'image_id': '0',
   'iscrowd': False,
   'segmentation': []}],
 'width': 2064}
```

An example instance from the YOLO config: 

``` python
{'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=2064x2944 at 0x7FAA140F2450>,
 'objects': {'bbox': [[747, 390, 1493, 292],
   [586, 206, 562, 157],
   [1463, 225, 92, 57],
   [1725, 215, 88, 65],
   [80, 1688, 163, 2295],
   [231, 1678, 253, 2283],
   [435, 1675, 262, 2285],
   [288, 543, 8, 7],
   [905, 1663, 812, 2301],
   [1318, 1653, 135, 2280],
   [1439, 1642, 217, 2277],
   [1737, 1019, 4, 13],
   [26, 1991, 54, 1679]],
  'label': [0, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1]}}
```


Provide any additional information that is not covered in the other sections about the data here. In particular describe any relationships between data points and if these relationships are made explicit.


### Data Fields

The fields for the YOLO config:

- `image`: the image
- `objects`: the annotations which consits of:
    - `bbox`: a list of bounding boxes for the image
    - `label`: a list of labels for this image

The fields for the COCO config:

- `heigh`: height of the image
- `width`: width of the image
- `image`: image 
- `image_id`: id for the image
- `objects`: annotations in COCO format, consisting of a list containing dictionaries with the following keys:
  - `bbox`: bounding boxes for the images
  - `category_id`: label for the image
  - `image_id`: id for the image
  - `iscrowd`: COCO is crowd flag
  - `segmentation`: COCO segmentation annotations (empty in this case but kept for compatibility with other processing scripts


 
### Data Splits

Describe and name the splits in the dataset if there are more than one.

Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g. if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here.

Provide the sizes of each split. As appropriate, provide any descriptive statistics for the features, such as average length.  For example:

|                         | train | validation | test |
|-------------------------|------:|-----------:|-----:|
| Input Sentences         |       |            |      |
| Average Sentence Length |       |            |      |

## Dataset Creation

### Curation Rationale

What need motivated the creation of this dataset? What are some of the reasons underlying the major choices involved in putting it together?

### Source Data

This section describes the source data (e.g. news text and headlines, social media posts, translated sentences,...)

#### Initial Data Collection and Normalization

Describe the data collection process. Describe any criteria for data selection or filtering. List any key words or search terms used. If possible, include runtime information for the collection process.

If data was collected from other pre-existing datasets, link to source here and to their [Hugging Face version](https://huggingface.co/datasets/dataset_name).

If the data was modified or normalized after being collected (e.g. if the data is word-tokenized), describe the process and the tools used.

#### Who are the source language producers?

State whether the data was produced by humans or machine generated. Describe the people or systems who originally created the data.

If available, include self-reported demographic or identity information for the source data creators, but avoid inferring this information. Instead state that this information is unknown. See [Larson 2017](https://www.aclweb.org/anthology/W17-1601.pdf) for using identity categories as a variables, particularly gender.

Describe the conditions under which the data was created (for example, if the producers were crowdworkers, state what platform was used, or if the data was found, what website the data was found on). If compensation was provided, include that information here.

Describe other people represented or mentioned in the data. Where possible, link to references for the information.

### Annotations

If the dataset contains annotations which are not part of the initial data collection, describe them in the following paragraphs.

#### Annotation process

If applicable, describe the annotation process and any tools used, or state otherwise. Describe the amount of data annotated, if not all. Describe or reference annotation guidelines provided to the annotators. If available, provide interannotator statistics. Describe any annotation validation processes.

#### Who are the annotators?

If annotations were collected for the source data (such as class labels or syntactic parses), state whether the annotations were produced by humans or machine generated.

Describe the people or systems who originally created the annotations and their selection criteria if applicable.

If available, include self-reported demographic or identity information for the annotators, but avoid inferring this information. Instead state that this information is unknown. See [Larson 2017](https://www.aclweb.org/anthology/W17-1601.pdf) for using identity categories as a variables, particularly gender.

Describe the conditions under which the data was annotated (for example, if the annotators were crowdworkers, state what platform was used, or if the data was found, what website the data was found on). If compensation was provided, include that information here.

### Personal and Sensitive Information

State whether the dataset uses identity categories and, if so, how the information is used. Describe where this information comes from (i.e. self-reporting, collecting from profiles, inferring, etc.). See [Larson 2017](https://www.aclweb.org/anthology/W17-1601.pdf) for using identity categories as a variables, particularly gender. State whether the data is linked to individuals and whether those individuals can be identified in the dataset, either directly or indirectly (i.e., in combination with other data).

State whether the dataset contains other data that might be considered sensitive (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history).  

If efforts were made to anonymize the data, describe the anonymization process.

## Considerations for Using the Data

### Social Impact of Dataset

Please discuss some of the ways you believe the use of this dataset will impact society.

The statement should include both positive outlooks, such as outlining how technologies developed through its use may improve people's lives, and discuss the accompanying risks. These risks may range from making important decisions more opaque to people who are affected by the technology, to reinforcing existing harmful biases (whose specifics should be discussed in the next section), among other considerations.

Also describe in this section if the proposed dataset contains a low-resource or under-represented language. If this is the case or if this task has any impact on underserved communities, please elaborate here.

### Discussion of Biases

Provide descriptions of specific biases that are likely to be reflected in the data, and state whether any steps were taken to reduce their impact.

For Wikipedia text, see for example [Dinan et al 2020 on biases in Wikipedia (esp. Table 1)](https://arxiv.org/abs/2005.00614), or [Blodgett et al 2020](https://www.aclweb.org/anthology/2020.acl-main.485/) for a more general discussion of the topic.

If analyses have been run quantifying these biases, please add brief summaries and links to the studies here.

### Other Known Limitations

If studies of the datasets have outlined other limitations of the dataset, such as annotation artifacts, please outline and cite them here.

## Additional Information

### Dataset Curators

List the people involved in collecting the dataset and their affiliation(s). If funding information is known, include it here.

### Licensing Information

Provide the license and link to the license webpage if available.

### Citation Information


```
@dataset{clerice_thibault_2022_6827706,
  author       = {Clérice, Thibault},
  title        = {YALTAi: Tabular Dataset},
  month        = jul,
  year         = 2022,
  publisher    = {Zenodo},
  version      = {1.0.0},
  doi          = {10.5281/zenodo.6827706},
  url          = {https://doi.org/10.5281/zenodo.6827706}
}
```

If the dataset has a [DOI](https://doi.org/10.5281/zenodo.6827706), please provide it here.

### Contributions

Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.