Datasets:
File size: 9,722 Bytes
97b92e8 f588760 97b92e8 f588760 97b92e8 f588760 97b92e8 f588760 97b92e8 f588760 97b92e8 f588760 97b92e8 53a6d4b f588760 97b92e8 53a6d4b 97b92e8 53a6d4b 97b92e8 f588760 97b92e8 f588760 97b92e8 f588760 97b92e8 f588760 97b92e8 f588760 53a6d4b 97b92e8 f588760 97b92e8 f588760 97b92e8 f588760 97b92e8 f588760 53a6d4b 97b92e8 f588760 97b92e8 f588760 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Copyright 2022 Daniel van Strien.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NLS Chapbook Illustrations"""
import collections
import json
import os
from typing import Any, Dict, List
import pandas as pd
import datasets
_CITATION = """@inproceedings{10.1145/3476887.3476893,
author = {Dutta, Abhishek and Bergel, Giles and Zisserman, Andrew},
title = {Visual Analysis of Chapbooks Printed in Scotland},
year = {2021},
isbn = {9781450386906},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3476887.3476893},
doi = {10.1145/3476887.3476893},
abstract = {Chapbooks were short, cheap printed booklets produced in large quantities in Scotland, England, Ireland, North America and much of Europe between roughly the seventeenth and nineteenth centuries. A form of popular literature containing songs, stories, poems, games, riddles, religious writings and other content designed to appeal to a wide readership, they were frequently illustrated, particularly on their title-pages. This paper describes the visual analysis of such chapbook illustrations. We automatically extract all the illustrations contained in the National Library of Scotland Chapbooks Printed in Scotland dataset, and create a visual search engine to search this dataset using full or part-illustrations as queries. We also cluster these illustrations based on their visual content, and provide keyword-based search of the metadata associated with each publication. The visual search; clustering of illustrations based on visual content; and metadata search features enable researchers to forensically analyse the chapbooks dataset and to discover unnoticed relationships between its elements. We release all annotations and software tools described in this paper to enable reproduction of the results presented and to allow extension of the methodology described to datasets of a similar nature.},
booktitle = {The 6th International Workshop on Historical Document Imaging and Processing},
pages = {67–72},
numpages = {6},
keywords = {illustration detection, chapbooks, image search, visual grouping, printing, digital scholarship, illustration dataset},
location = {Lausanne, Switzerland},
series = {HIP '21}
}
"""
_DESCRIPTION = "This dataset comprises of images from chapbooks held by the National Library of Scotland and digitised and published as its Chapbooks Printed in Scotland dataset"
_HOMEPAGE = "https://www.robots.ox.ac.uk/~vgg/research/chapbooks/"
_LICENSE = "Public Domain Mark 1.0" # TODO confirm licence terms for annotations
_IMAGES_URL = "https://nlsfoundry.s3.amazonaws.com/data/nls-data-chapbooks.zip"
# TODO update url if this is merged upstream
_ANNOTATIONS_URL = "https://gitlab.com/davanstrien/nls-chapbooks-illustrations/-/raw/master/data/annotations/step5-manual-verification-image-0-47329_train_coco.json"
class NationalLibraryScotlandChapBooksConfig(datasets.BuilderConfig):
"""BuilderConfig for National Library of Scotland Chapbooks dataset."""
def __init__(self, name, **kwargs):
super(NationalLibraryScotlandChapBooksConfig, self).__init__(
version=datasets.Version("1.0.0"),
name=name,
description="NLS Chapbook Illustrations",
**kwargs,
)
class NationalLibraryScotlandChapBooks(datasets.GeneratorBasedBuilder):
"""National Library of Scotland Chapbooks dataset."""
BUILDER_CONFIGS = [
NationalLibraryScotlandChapBooksConfig("illustration-detection"),
NationalLibraryScotlandChapBooksConfig("image-classification"),
NationalLibraryScotlandChapBooksConfig("image-matching"),
]
def _info(self):
if self.config.name == "illustration-detection":
features = datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
}
)
object_dict = {
"category_id": datasets.ClassLabel(
names=["early_printed_illustration"]
),
"image_id": datasets.Value("string"),
"id": datasets.Value("int64"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"segmentation": [[datasets.Value("float32")]],
"iscrowd": datasets.Value("bool"),
}
features["objects"] = [object_dict]
if self.config.name == "image-classification":
features = datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(
num_classes=2, names=["not-illustrated", "illustrated"]
),
}
)
if self.config.name == "image-matching":
features = datasets.Features(
{
"image": datasets.Image(),
"group-label": datasets.Value("int32"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
images = dl_manager.download_and_extract(_IMAGES_URL)
annotations = dl_manager.download(_ANNOTATIONS_URL)
image_match_annotations = dl_manager.download(
"illustration-group-specifications[83].csv"
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotations_file": os.path.join(annotations),
"image_dir": os.path.join(images, "nls-data-chapbooks"),
"image_match_annotations": image_match_annotations,
},
)
]
def _get_image_id_to_annotations_mapping(
self, annotations: List[Dict]
) -> Dict[int, List[Dict[Any, Any]]]:
"""
A helper function to build a mapping from image ids to annotations.
"""
image_id_to_annotations = collections.defaultdict(list)
for annotation in annotations:
image_id_to_annotations[annotation["image_id"]].append(annotation)
return image_id_to_annotations
def _generate_examples(self, annotations_file, image_dir, image_match_annotations):
def _image_info_to_example(image_info, image_dir):
image = image_info["file_name"]
return {
"image_id": image_info["id"],
"image": os.path.join(image_dir, image),
"width": image_info["width"],
"height": image_info["height"],
}
with open(annotations_file, encoding="utf8") as f:
annotation_data = json.load(f)
images = annotation_data["images"]
annotations = annotation_data["annotations"]
image_id_to_annotations = self._get_image_id_to_annotations_mapping(
annotations
)
if self.config.name == "illustration-detection":
for idx, image_info in enumerate(images):
example = _image_info_to_example(image_info, image_dir)
annotations = image_id_to_annotations[image_info["id"]]
objects = []
for annotation in annotations:
category_id = annotation["category_id"]
if category_id == 1:
annotation["category_id"] = 0
objects.append(annotation)
example["objects"] = objects
yield (idx, example)
if self.config.name == "image-classification":
for idx, image_info in enumerate(images):
annotations = image_id_to_annotations[image_info["id"]]
label = 0 if len(annotations) < 1 else 1
example = {
"image": os.path.join(image_dir, image_info["file_name"]),
"label": label,
}
yield (idx, example)
if self.config.name == "image-matching":
df = pd.read_csv(image_match_annotations, dtype={"file_id": "string"})
df = df.drop_duplicates(subset=["filename"], keep=False)
df = df.set_index("filename", drop=True)
mapping = df.to_dict("index")
for idx, image_info in enumerate(images):
filename = image_info["file_name"]
match = mapping.get(filename)
if match:
match = match["set_id"]
example = {
"image": os.path.join(image_dir, image_info["file_name"]),
"group-label": match,
}
yield (idx, example)
|