Datasets:

Languages:
code
ArXiv:
Tags:
code
License:
File size: 5,212 Bytes
28f1a41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HumanEval-X-Bugs dataset."""


import json
import datasets



_DESCRIPTION = """
"""

_HOMEPAGE = "https://github.com/bigcode/commits"

def get_url(name):
    url = f"data/{name}/data/humanevalbugs.jsonl"
    return url

def split_generator(dl_manager, name):
    downloaded_files = dl_manager.download(get_url(name))
    return [
        datasets.SplitGenerator(
            name=datasets.Split.TEST,
            gen_kwargs={
                "filepath": downloaded_files,
            },
        )
    ]

class HumanEvalXBugsConfig(datasets.BuilderConfig):
    """BuilderConfig """

    def __init__(self, name, description, features, **kwargs):
        super(HumanEvalXBugsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
        self.name = name
        self.description = description
        self.features = features


class HumanEvalX(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        HumanEvalXConfig(
            name="python",
            description="Python HumanEvalBugs",
            features=[
                "task_id", "prompt", "declaration", "canonical_solution", "test", "example_test", "bug_type", "failure_symptoms", "entry_point"
            ]
        ),
        HumanEvalXConfig(
            name="cpp",
            description="C++ HumanEvalBugs",
            features=[
                "task_id", "prompt", "declaration", "canonical_solution", "test", "example_test", "bug_type", "failure_symptoms", "entry_point"
            ]
        ),

        HumanEvalXConfig(
            name="go",
            description="Go HumanEvalBugs",
            features=[
                "task_id", "prompt", "declaration", "canonical_solution", "test", "example_test", "bug_type", "failure_symptoms", "entry_point"
            ]
        ),
        HumanEvalXConfig(
            name="java",
            description="Java HumanEvalBugs",
            features=[
                "task_id", "prompt", "declaration", "canonical_solution", "test", "example_test", "bug_type", "failure_symptoms", "entry_point"
            ]
        ),

        HumanEvalXConfig(
            name="js",
            description="JavaScript HumanEvalBugs",
            features=[
                "task_id", "prompt", "declaration", "canonical_solution", "test", "example_test", "bug_type", "failure_symptoms", "entry_point"
            ]
        ),
        ]
    DEFAULT_CONFIG_NAME = "python"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "task_id": datasets.Value("string"),
                    "prompt": datasets.Value("string"),
                    "declaration": datasets.Value("string"),
                    "canonical_solution": datasets.Value("string"),
                    "test": datasets.Value("string"),
                    "example_test": datasets.Value("string"),
                    "bug_type": datasets.Value("string"),
                    "failure_symptoms": datasets.Value("string"),
                    "entry_point": datasets.Value("string"),
                }
            ),
            homepage=_HOMEPAGE,
        )

    def _split_generators(self, dl_manager):
        if self.config.name == "python":
            return split_generator(dl_manager, self.config.name)

        elif self.config.name == "cpp":
            return split_generator(dl_manager, self.config.name)

        elif self.config.name == "go":
            return split_generator(dl_manager, self.config.name)

        elif self.config.name == "java":
            return split_generator(dl_manager, self.config.name)

        elif self.config.name == "js":
            return split_generator(dl_manager, self.config.name)
           
    def _generate_examples(self, filepath):
        key = 0
        with open(filepath) as f:
            for line in f:
                row = json.loads(line)
                key += 1
                yield key, {
                    "task_id": row["task_id"],
                    "prompt": row["prompt"],
                    "declaration": row["declaration"],
                    "canonical_solution": row["canonical_solution"],
                    "test": row["test"],
                    "example_test": row["example_test"],
                    "bug_type": row["bug_type"],
                    "failure_symptoms": row["failure_symptoms"],
                    "entry_point": row["entry_point"],
                }  
                key += 1