File size: 14,850 Bytes
2532943 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
We present the SourceData-NLP dataset produced through the routine curation of papers during the publication process.
A unique feature of this dataset is its emphasis on the annotation of bioentities in figure legends.
We annotate eight classes of biomedical entities (small molecules, gene products, subcellular components,
cell lines, cell types, tissues, organisms, and diseases), their role in the experimental design,
and the nature of the experimental method as an additional class.
SourceData-NLP contains more than 620,000 annotated biomedical entities, curated from 18,689 figures in
3,223 papers in molecular and cell biology.
[bigbio_schema_name] = kb
"""
import itertools
import json
import os
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import BigBioConfig, Tasks, kb_features
_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_DISPLAYNAME = "SourceData-NLP"
_CITATION = """\
@article{abreu2023sourcedata,
title={The SourceData-NLP dataset: integrating curation into scientific publishing
for training large language models},
author={Abreu-Vicente, Jorge and Sonntag, Hannah and Eidens, Thomas and Lemberger, Thomas},
journal={arXiv preprint arXiv:2310.20440},
year={2023}
}
"""
_DATASETNAME = "sourcedata_nlp"
_DESCRIPTION = """\
SourceData is an NER/NED dataset of expert annotations of nine
entity types in figure captions from biomedical research papers.
"""
_HOMEPAGE = "https://sourcedata.embo.org/"
_LICENSE = "CC_BY_4p0"
_URLS = {
_DATASETNAME: (
"https://huggingface.co/datasets/EMBO/SourceData/resolve/main/bigbio/source_data_json_splits_2.0.2.zip"
)
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "2.0.2"
_BIGBIO_VERSION = "1.0.0"
class SourceDataNlpDataset(datasets.GeneratorBasedBuilder):
"""NER + NED dataset of multiple entity types from figure captions of scientific publications"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="sourcedata_nlp_source",
version=SOURCE_VERSION,
description="sourcedata_nlp source schema",
schema="source",
subset_id="sourcedata_nlp",
),
BigBioConfig(
name="sourcedata_nlp_bigbio_kb",
version=BIGBIO_VERSION,
description="sourcedata_nlp BigBio schema",
schema="bigbio_kb",
subset_id="sourcedata_nlp",
),
]
DEFAULT_CONFIG_NAME = "sourcedata_nlp_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"doi": datasets.Value("string"),
"abstract": datasets.Value("string"),
"figures": [
{
"fig_id": datasets.Value("string"),
"label": datasets.Value("string"),
"fig_graphic_url": datasets.Value("string"),
"panels": [
{
"panel_id": datasets.Value("string"),
"text": datasets.Value("string"),
"panel_graphic_url": datasets.Value("string"),
"entities": [
{
"annotation_id": datasets.Value("string"),
"source": datasets.Value("string"),
"category": datasets.Value("string"),
"entity_type": datasets.Value("string"),
"role": datasets.Value("string"),
"text": datasets.Value("string"),
"ext_ids": datasets.Value("string"),
"norm_text": datasets.Value("string"),
"ext_dbs": datasets.Value("string"),
"in_caption": datasets.Value("bool"),
"ext_names": datasets.Value("string"),
"ext_tax_ids": datasets.Value("string"),
"ext_tax_names": datasets.Value("string"),
"ext_urls": datasets.Value("string"),
"offsets": [datasets.Value("int64")],
}
],
}
],
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "train.jsonl"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "test.jsonl"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "validation.jsonl"),
},
),
]
def _generate_examples(self, filepath) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
with open(filepath) as fstream:
for line in fstream:
document = self._parse_document(line)
doc_figs = document["figures"]
all_figures = []
for fig in doc_figs:
all_panels = []
figure = {
"fig_id": fig["fig_id"],
"label": fig["label"],
"fig_graphic_url": fig["fig_graphic_url"],
}
for p in fig["panels"]:
panel = {
"panel_id": p["panel_id"],
"text": p["text"].strip(),
"panel_graphic_url": p["panel_graphic_url"],
"entities": [
{
"annotation_id": t["tag_id"],
"source": t["source"],
"category": t["category"],
"entity_type": t["entity_type"],
"role": t["role"],
"text": t["text"],
"ext_ids": t["ext_ids"],
"norm_text": t["norm_text"],
"ext_dbs": t["ext_dbs"],
"in_caption": bool(t["in_caption"]),
"ext_names": t["ext_names"],
"ext_tax_ids": t["ext_tax_ids"],
"ext_tax_names": t["ext_tax_names"],
"ext_urls": t["ext_urls"],
"offsets": t["local_offsets"],
}
for t in p["tags"]
],
}
for e in panel["entities"]:
assert type(e["offsets"]) == list
if len(panel["entities"]) == 0:
continue
all_panels.append(panel)
figure["panels"] = all_panels
# Pass on all figures that aren't split into panels
if len(all_panels) == 0:
continue
all_figures.append(figure)
output = {
"doi": document["doi"],
"abstract": document["abstract"],
"figures": all_figures,
}
yield document["doi"], output
elif self.config.schema == "bigbio_kb":
uid = itertools.count(0)
with open(filepath) as fstream:
for line in fstream:
output = {}
document = self._parse_document(line)
# Get ids for each document + list of passages
output["id"] = next(uid)
output["document_id"] = document["doi"]
output["passages"] = document["passages"]
for i, passage in enumerate(output["passages"]):
passage["id"] = next(uid)
passage_text = passage["text"].strip()
passage["text"] = [passage_text]
passage_offsets = passage["offsets"]
if i == 0:
passage_offsets[1] = len(passage_text.strip())
passage["offsets"] = [
[
passage_offsets[0],
passage_offsets[0] + passage_offsets[1],
]
]
entities = []
for fig in document["figures"]:
for panel in fig["panels"]:
for tag in panel["tags"]:
# Create two separate ents if both role and tag are labeled.
ent_type = self._get_entity_type(tag)
if ent_type is not None:
ent = {
"id": next(uid),
"type": ent_type,
"text": [tag["text"]],
"offsets": [tag["document_offsets"]],
"normalized": [
{"db_name": db_name, "db_id": db_id}
for db_name, db_id in zip(tag["ext_dbs"], tag["ext_ids"])
],
}
entities.append(ent)
# When entity has a role as well, add an additional entity for this
# Necessary to create duplicate entity due to constraints of BigBio schema
# These can be consolidated by matching up document ID + offsets
role = self._get_entity_role(tag)
if role is not None:
role_ent = {
"id": next(uid),
"type": role,
"text": [tag["text"]],
"offsets": [tag["document_offsets"]],
"normalized": [
{"db_name": db_name, "db_id": db_id}
for db_name, db_id in zip(tag["ext_dbs"], tag["ext_ids"])
],
}
entities.append(role_ent)
output["entities"] = entities
output["relations"] = []
output["events"] = []
output["coreferences"] = []
yield output["document_id"], output
def _parse_document(self, raw_document):
doc = json.loads(raw_document.strip())
return doc
def _get_entity_type(self, tag):
if tag["entity_type"] == "molecule":
return "SMALL_MOLECULE"
elif tag["entity_type"] in ["geneprod", "gene", "protein"]:
return "GENEPROD"
elif tag["entity_type"] == "subcellular":
return "SUBCELLULAR"
elif tag["entity_type"] == "cell_type":
return "CELL_TYPE"
elif tag["entity_type"] == "tissue":
return "TISSUE"
elif tag["entity_type"] == "organism":
return "ORGANISM"
elif tag["category"] == "assay":
return "EXP_ASSAY"
elif tag["category"] == "disease":
return "DISEASE"
elif tag["entity_type"] == "cell_line":
return "CELL_LINE"
def _get_entity_role(self, tag):
if tag["entity_type"] == "molecule":
if tag["role"] == "intervention":
return "CONTROLLED_VAR"
elif tag["role"] == "assayed":
return "MEASURED_VAR"
elif tag["entity_type"] in ["geneprod", "gene", "protein"]:
if tag["role"] == "intervention":
return "CONTROLLED_VAR"
elif tag["role"] == "assayed":
return "MEASURED_VAR"
|