File size: 9,082 Bytes
ac9365b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset loader for the SCAI Disease dataset.
SCAI Disease is a dataset annotated in 2010 with mentions of diseases and
adverse effects. It is a corpus containing 400 randomly selected MEDLINE
abstracts generated using ‘Disease OR Adverse effect’ as a PubMed query. This
evaluation corpus was annotated by two individuals who hold a Master’s degree
in life sciences.
"""
import os
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{gurulingappa:lrec-ws10,
author = {Harsha Gurulingappa and Roman Klinger and Martin Hofmann-Apitius and Juliane Fluck},
title = {An Empirical Evaluation of Resources for the Identification of Diseases and Adverse Effects in Biomedical Literature},
booktitle = {LREC Workshop on Building and Evaluating Resources for Biomedical Text Mining},
year = {2010},
}
"""
_DATASETNAME = "scai_disease"
_DISPLAYNAME = "SCAI Disease"
_DESCRIPTION = """\
SCAI Disease is a dataset annotated in 2010 with mentions of diseases and
adverse effects. It is a corpus containing 400 randomly selected MEDLINE
abstracts generated using ‘Disease OR Adverse effect’ as a PubMed query. This
evaluation corpus was annotated by two individuals who hold a Master’s degree
in life sciences.
"""
_HOMEPAGE = "https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads/corpus-for-disease-names-and-adverse-effects.html"
_LICENSE = 'License information unavailable'
_URLS = {
_DATASETNAME: "https://www.scai.fraunhofer.de/content/dam/scai/de/downloads/bioinformatik/Disease-ae-corpus.iob",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class ScaiDiseaseDataset(datasets.GeneratorBasedBuilder):
"""SCAI Disease is a dataset annotated in 2010 with mentions of diseases and
adverse effects."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="scai_disease_source",
version=SOURCE_VERSION,
description="SCAI Disease source schema",
schema="source",
subset_id="scai_disease",
),
BigBioConfig(
name="scai_disease_bigbio_kb",
version=BIGBIO_VERSION,
description="SCAI Disease BigBio schema",
schema="bigbio_kb",
subset_id="scai_disease",
),
]
DEFAULT_CONFIG_NAME = "scai_disease_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"tokens": [
{
"offsets": [datasets.Value("int64")],
"text": datasets.Value("string"),
"tag": datasets.Value("string"),
}
],
"entities": [
{
"offsets": [datasets.Value("int64")],
"text": datasets.Value("string"),
"type": datasets.Value("string"),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
else:
raise ValueError("Unrecognized schema: %s" % self.config.schema)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
url = _URLS[_DATASETNAME]
filepath = dl_manager.download(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": filepath,
"split": "train",
},
),
]
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
# Iterates through lines in file, collecting all lines belonging
# to an example and converting into a single dict
examples = []
tokens = None
with open(filepath, "r") as data_file:
for line in data_file:
line = line.strip()
if line.startswith("###"):
tokens = [line]
elif line == "":
examples.append(self._make_example(tokens))
else:
tokens.append(line)
# Returns the examples using the desired schema
if self.config.schema == "source":
for i, example in enumerate(examples):
yield i, example
elif self.config.schema == "bigbio_kb":
for i, example in enumerate(examples):
bigbio_example = {
"id": "example-" + str(i),
"document_id": example["document_id"],
"passages": [
{
"id": "passage-" + str(i),
"type": "abstract",
"text": [example["text"]],
"offsets": [[0, len(example["text"])]],
}
],
"entities": [],
"events": [],
"coreferences": [],
"relations": [],
}
# Converts entities to BigBio format
for j, entity in enumerate(example["entities"]):
bigbio_example["entities"].append(
{
"id": "entity-" + str(i) + "-" + str(j),
"offsets": [entity["offsets"]],
"text": [entity["text"]],
"type": entity["type"],
"normalized": [],
}
)
yield i, bigbio_example
@staticmethod
def _make_example(tokens):
"""
Converts a list of lines representing tokens into an example dictionary
formatted according to the source schema
:param tokens: list of strings
:return: dictionary in the source schema
"""
document_id = tokens[0][4:]
text = ""
processed_tokens = []
entities = []
last_offset = 0
for token in tokens[1:]:
token_pieces = token.split("\t")
if len(token_pieces) != 5:
raise ValueError("Failed to parse line: %s" % token)
token_text = str(token_pieces[0])
token_start = int(token_pieces[1])
token_end = int(token_pieces[2])
entity_text = str(token_pieces[3])
token_tag = str(token_pieces[4])[1:]
if token_start > last_offset:
for _ in range(token_start - last_offset):
text += " "
elif token_start < last_offset:
raise ValueError("Invalid start index: %s" % token)
last_offset = token_end
text += token_text
processed_tokens.append(
{
"offsets": [token_start, token_end],
"text": token_text,
"tag": token_tag,
}
)
if entity_text != "":
entities.append(
{
"offsets": [token_start, token_start + len(entity_text)],
"text": entity_text,
"type": token_tag[2:],
}
)
return {
"document_id": document_id,
"text": text,
"entities": entities,
"tokens": processed_tokens,
}
|