Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 9,082 Bytes
ac9365b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
A dataset loader for the SCAI Disease dataset.

SCAI Disease is a dataset annotated in 2010 with mentions of diseases and
adverse effects. It is a corpus containing 400 randomly selected MEDLINE
abstracts generated using ‘Disease OR Adverse effect’ as a PubMed query. This
evaluation corpus was annotated by two individuals who hold a Master’s degree
in life sciences.
"""

import os
from typing import Dict, List, Tuple

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{gurulingappa:lrec-ws10,
  author    = {Harsha Gurulingappa and Roman Klinger and Martin Hofmann-Apitius and Juliane Fluck},
  title     = {An Empirical Evaluation of Resources for the Identification of Diseases and Adverse Effects in Biomedical Literature},
  booktitle = {LREC Workshop on Building and Evaluating Resources for Biomedical Text Mining},
  year      = {2010},
}
"""

_DATASETNAME = "scai_disease"
_DISPLAYNAME = "SCAI Disease"

_DESCRIPTION = """\
SCAI Disease is a dataset annotated in 2010 with mentions of diseases and
adverse effects. It is a corpus containing 400 randomly selected MEDLINE
abstracts generated using ‘Disease OR Adverse effect’ as a PubMed query. This
evaluation corpus was annotated by two individuals who hold a Master’s degree
in life sciences.
"""

_HOMEPAGE = "https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads/corpus-for-disease-names-and-adverse-effects.html"

_LICENSE = 'License information unavailable'

_URLS = {
    _DATASETNAME: "https://www.scai.fraunhofer.de/content/dam/scai/de/downloads/bioinformatik/Disease-ae-corpus.iob",
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]

_SOURCE_VERSION = "1.0.0"

_BIGBIO_VERSION = "1.0.0"


class ScaiDiseaseDataset(datasets.GeneratorBasedBuilder):
    """SCAI Disease is a dataset annotated in 2010 with mentions of diseases and
    adverse effects."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="scai_disease_source",
            version=SOURCE_VERSION,
            description="SCAI Disease source schema",
            schema="source",
            subset_id="scai_disease",
        ),
        BigBioConfig(
            name="scai_disease_bigbio_kb",
            version=BIGBIO_VERSION,
            description="SCAI Disease BigBio schema",
            schema="bigbio_kb",
            subset_id="scai_disease",
        ),
    ]

    DEFAULT_CONFIG_NAME = "scai_disease_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "document_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "tokens": [
                        {
                            "offsets": [datasets.Value("int64")],
                            "text": datasets.Value("string"),
                            "tag": datasets.Value("string"),
                        }
                    ],
                    "entities": [
                        {
                            "offsets": [datasets.Value("int64")],
                            "text": datasets.Value("string"),
                            "type": datasets.Value("string"),
                        }
                    ],
                }
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features
        else:
            raise ValueError("Unrecognized schema: %s" % self.config.schema)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        url = _URLS[_DATASETNAME]
        filepath = dl_manager.download(url)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": filepath,
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        # Iterates through lines in file, collecting all lines belonging
        # to an example and converting into a single dict
        examples = []
        tokens = None
        with open(filepath, "r") as data_file:
            for line in data_file:
                line = line.strip()
                if line.startswith("###"):
                    tokens = [line]
                elif line == "":
                    examples.append(self._make_example(tokens))
                else:
                    tokens.append(line)

        # Returns the examples using the desired schema
        if self.config.schema == "source":
            for i, example in enumerate(examples):
                yield i, example

        elif self.config.schema == "bigbio_kb":
            for i, example in enumerate(examples):
                bigbio_example = {
                    "id": "example-" + str(i),
                    "document_id": example["document_id"],
                    "passages": [
                        {
                            "id": "passage-" + str(i),
                            "type": "abstract",
                            "text": [example["text"]],
                            "offsets": [[0, len(example["text"])]],
                        }
                    ],
                    "entities": [],
                    "events": [],
                    "coreferences": [],
                    "relations": [],
                }

                # Converts entities to BigBio format
                for j, entity in enumerate(example["entities"]):
                    bigbio_example["entities"].append(
                        {
                            "id": "entity-" + str(i) + "-" + str(j),
                            "offsets": [entity["offsets"]],
                            "text": [entity["text"]],
                            "type": entity["type"],
                            "normalized": [],
                        }
                    )

                yield i, bigbio_example

    @staticmethod
    def _make_example(tokens):
        """
        Converts a list of lines representing tokens into an example dictionary
        formatted according to the source schema

        :param tokens: list of strings
        :return: dictionary in the source schema
        """
        document_id = tokens[0][4:]

        text = ""
        processed_tokens = []
        entities = []
        last_offset = 0

        for token in tokens[1:]:
            token_pieces = token.split("\t")
            if len(token_pieces) != 5:
                raise ValueError("Failed to parse line: %s" % token)

            token_text = str(token_pieces[0])
            token_start = int(token_pieces[1])
            token_end = int(token_pieces[2])
            entity_text = str(token_pieces[3])
            token_tag = str(token_pieces[4])[1:]

            if token_start > last_offset:
                for _ in range(token_start - last_offset):
                    text += " "
            elif token_start < last_offset:
                raise ValueError("Invalid start index: %s" % token)
            last_offset = token_end

            text += token_text
            processed_tokens.append(
                {
                    "offsets": [token_start, token_end],
                    "text": token_text,
                    "tag": token_tag,
                }
            )
            if entity_text != "":
                entities.append(
                    {
                        "offsets": [token_start, token_start + len(entity_text)],
                        "text": entity_text,
                        "type": token_tag[2:],
                    }
                )

        return {
            "document_id": document_id,
            "text": text,
            "entities": entities,
            "tokens": processed_tokens,
        }